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EXECUTIVE SUMMARY 

Transit Signal Priority (TSP) is a traffic signal control strategy that can provide priority to transit 

vehicles and thus improve transit service. However, this control strategy generally causes 

adverse effects on other traffic, which limits its widespread adoption. The development of 

Connected Vehicle (CV) technology enables the real-time acquisition of fine-grained traffic 

information, providing more comprehensive data for the optimization of traffic signals. 

Simultaneously, optimization algorithms in the field of TSP have been advancing at a rapid pace. 

Artificial intelligent (AI)-powered techniques, such as Deep Reinforcement Learning (DRL), 

have become promising approaches for addressing TSP problems recently.  

In this study, we develop adaptive TSP control frameworks for both isolated intersection 

scenarios and multiple intersection scenarios, assuming the implementation of CV technology. 

Leveraging the comprehensive traffic data obtained from CVs, our frameworks employ both 

single-agent DRL and multi-agent DRL techniques to address optimization problems. The 

controllers, based on our proposed frameworks, are tested in simulation environments and 

compared with various widely used traffic signal controllers across different scenarios. 

Results show that in the isolated intersection scenarios, the proposed DQN controller has the best 

performance in terms of average person delay. Compared to the pretimed signal controller, it 

reduces the average person delay by 18.77% in peak hours and 23.37% in off-peak hours. 

Furthermore, it also results in decreased average delays for both buses and cars. The sensitivity 

analysis results indicate that the proposed controller has the potential for practical applications, 

as it can effectively handle some dynamic changes. Furthermore, the corridor-level experimental 

results demonstrate that the proposed controller, MAPPO-M, which adopts the multi-agent 

proximal policy optimization (MAPPO) algorithm and the multi-discrete action space, exhibits 

superior performance in terms of bus services while maintaining decent service for regular 

traffic. Additionally, sensitivity analysis indicates that MAPPO-M can achieve its best 

performance when the CV market penetration rate exceeds 60%. It is also capable of handling 

dynamics introduced by varying passenger occupancy and bus arrival headways. 
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Chapter 1. Introduction 

1.1. Problem Statement 

As urbanization and population growth continue, travel demand continues to rise. 

However, the growth rate of transportation infrastructure supply, especially in metropolitan 

areas, is low, leading to a significant increase in traffic congestion. In general, there are two 

options to address this issue: One is to build more transportation infrastructure, and the other is 

to improve the efficiency of the existing transportation system. Given the limitations of space 

and funding, improving efficiency is the more realistic choice. As a result, public transportation, 

which is more efficient than private transportation, is gaining prominence in the urban 

transportation system. However, users of public transportation often have to share spaces and 

experience longer travel times, which makes it less attractive than private transportation. To this 

end, transit priority strategies, which can greatly help in developing a more sustainable, 

equitable, and efficient urban transportation system, have been extensively studied. The 

implementation strategies include the formulation of policies to prioritize public transportation, 

the provision of financial subsidies for public transportation, the construction of high accessible 

public transportation system, and the granting of priority to transit vehicles, etc. Among them, 

transit signal priority (TSP) is a critical operational strategy that can improve the service 

performance of transit vehicles on the road.  

TSP generally adjusts the signal plan to ensure priority for transit vehicles at 

intersections, arterials, or networks (Skabardonis, 2000). However, this control strategy generally 

causes adverse effects on other traffic, which limits its widespread adoption. In order to solve 

this problem, adaptive TSP, which can mitigate negative effects while still providing priority to 

transit vehicles, has been studied for decades (Christofa & Skabardonis, 2011; Ma et al., 2010; 

Skabardonis & Geroliminis, 2008). Generally, adaptive TSP has to obtain real-time traffic data to 

optimize the traffic signal plan. Traditional traffic data sensors, such as loop detectors, cameras, 

and radars, are installed in fixed positions and are therefore more or less deficient in acquiring 

real-time data. Recently, with the rapid development of connected vehicle (CV) technology, 

more accurate and more comprehensive real-time traffic data can be easily obtained. This 

advantage can surely boost the advancement of adaptive TSP, and many researchers have 

integrated CV technology with adaptive TSP (Ghanim & Abu-Lebdeh, 2015; Zeng et al., 2021). 

The U.S. Department of Transportation (USDOT) has also included TSPCV on its list of High-

Priority Applications and Development Approaches (U.S. Department of Transportation, 2011).  

CV technology refers to the integration of wireless communication technology, such as 

dedicated short-range communication and cellular technology, in vehicles, enabling them to 

communicate with other vehicles, infrastructure, and other traffic participants within a certain 

distance (Guo et al., 2019). With the advent of CV technology, real-time detailed information, 

such as passenger occupancy, can be obtained. This enables the adoption of more fine-grained 



 

 

2 

 

metrics, such as average person delay, as the objective for optimizing traffic signals. As a result, 

transit vehicles with more passengers can cross intersections more efficiently, reducing travel 

time for passengers and encouraging greater usage of public transportation services. 

Furthermore, the availability of rich real-time traffic data provided by CV technology opens up 

the possibility of optimizing traffic signal controllers through data-driven approaches. 

Optimization algorithms in the field of traffic signal control (TSC) have been advancing 

at a rapid pace. Among them, deterministic algorithms such as mixed-integer nonlinear 

programming (MINLP) and dynamic programming (DP) have been widely used to optimize 

traffic signal control (Feng et al., 2015; Li & Ban, 2019; Priemer & Friedrich, 2009). However, 

these algorithms have to model the traffic environment as comprehensively as possible, which is 

computationally intensive, time-consuming, and thus impractical (Mohamad Alizadeh 

Shabestary, 2019). On the other hand, conventional stochastic algorithms, like genetic algorithms 

(Lee et al., 2006; Teklu et al., 2007; Yang & Fan, 2023), tend to get stuck in sub-optimal 

solutions, making them unreliable for real-world implementation. Due to the availability of real-

time traffic data in CV environments, reinforcement learning (RL) algorithms, which are data-

driven and can learn the optimal control strategies when interacting with the environment, have 

gained significant attention as potential solutions to optimize TSC problems (Aslani et al., 2017; 

Chow et al., 2021; Li et al., 2016). RL was initially developed to solve problems with discrete 

states and actions. However, when integrated with deep learning, the method is commonly 

referred to as deep reinforcement learning (DRL) and becomes a promising approach for TSC 

problems (Genders & Razavi, 2016; Mao et al., 2023; Shabestary & Abdulhai, 2022). 

Most of the existing DRL studies have focused on optimizing the signal control problem 

that only considers the purely private traffic mode. This study, however, seeks to propose a 

robust adaptive TSP controller in a CV environment that grants priority to transit vehicles while 

minimizing the negative impact on regular traffic. DRL approaches will be employed in this 

research to solve the signal control optimization problem. Comprehensive simulation 

experiments based on real-world traffic configurations will be conducted to evaluate the 

effectiveness of the proposed control algorithms. This study contributes to the development of 

adaptive TSP controllers in the CV environment by utilizing advanced learning-based 

optimization approaches. 

1.2. Objectives 

The objectives of this study are to: 

1) Conduct a comprehensive literature review on TSC and TSP related optimization 

algorithms. 

2) Propose adaptive TSP control systems by applying the DRL approach to solve 

optimization problems on two different levels: isolated intersections and corridors. 
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3) Build simulation testbeds based on both hypothetical and real-world traffic 

configurations. 

4) Conduct comprehensive simulation experiments to evaluate the effectiveness of the 

proposed control systems. 

5) Analyze and discuss the simulation results in different scenarios. 

1.3. Report Overview 

The report is organized as follows. A comprehensive literature review is presented in 

Chapter 2. The methodology used in DRL-based TSP controllers is described in Chapter 3. 

Chapters 4 and 5 provide details about the traffic configurations, simulation settings, and 

analysis results related to isolated intersection scenarios and corridor scenarios, respectively. 

Finally, in Chapter 6, the conclusions from this study are summarized and the future work is 

suggested. 
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Chapter 2. Literature Review 

2.1. Introduction 

This chapter provides a comprehensive review of the development of TSC and TSP related 

optimization algorithms. The following sections are organized as follows. Section Error! 

Reference source not found. discusses the existing research on conventional algorithms. The 

development of reinforcement learning algorithms utilized in TSC and TSP research is reviewed 

in section Error! Reference source not found.. Finally, a summary of the chapter is given in 

section 2.4. 

2.2. Conventional Optimization Algorithms 

2.2.1. Deterministic Algorithms 

The majority of conventional optimization algorithms are deterministic. In the TSC 

domain, these algorithms require the TSC system to be modeled as comprehensively as possible, 

which is often computationally intensive and time-consuming. As a result, the significant 

challenge when utilizing deterministic algorithms is to balance the complexity of the algorithm 

with the practical value of the controller, especially in dynamic real-world conditions.  

Feng et al. (2015) proposed an adaptive traffic signal controller that can optimize the 

signal phase and timing in a connected vehicle environment. A two-level optimization problem 

was formulated, and dynamic programming (DP) was employed to solve this problem. Given the 

low CV market penetration rate, a vehicle state estimation model based on the traffic data 

obtained via CVs was developed to provide complete information on vehicles approaching the 

intersection. The performance of the proposed controller was evaluated by modeling a real-world 

isolated intersection in VISSIM. Results showed that the proposed controller was more effective 

than a well-tuned fully actuated controller in reducing total delay by as much as 16.33% at a 

100% CV market penetration rate and exhibited similar performance at a 25% market 

penetration rate. 

Li and Ban (2019) proposed a signal timing controller for optimizing the signal timing at 

an isolated intersection with a fixed cycle length. The controller utilized vehicle arrival data 

obtained via CV technology as input to find optimal green time durations, with the objective of 

minimizing the weighted sum of vehicle fuel consumption and travel time. The optimization 

problem was formulated as a mixed-integer nonlinear program (MINLP), which was then solved 

by decomposing it into a sequential of signal-stage timing decision problems using dynamic 

programming. A stage in these sequential problems was referred to as a signal phase. Simulation 

experiments were conducted in VISSIM to evaluate the performance of the proposed model. The 

results indicated that the proposed controller outperformed the actuated controller under all 
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scenarios. Additionally, in terms of computational times for solving the MINLP problem, the DP 

method outperformed the NOMAD solver in MATLAB, especially for large-scale problems. 

He et al. (2014) proposed a multimodal traffic signal controller that can handle multiple 

active priority requests while ensuring signal coordination and vehicle actuation in the corridor, 

under the condition that V2I technology is available. The optimization problem was formulated 

as a request-based mixed-integer linear program (MILP) that simultaneously considered multiple 

priority requests, coordination, and real-time actuation. Numerical experiments were conducted 

in VISSIM based on a real-world two-intersection corridor to test the effectiveness of the 

proposed controller. The results showed that, compared to the coordinated-actuated traffic signal 

controller with TSP, the proposed controller reduced bus delay and pedestrian delay by 24.9% 

and 14%, respectively, in high traffic demand scenarios, while providing similar performance in 

terms of passenger car delay. In the meantime, real-time actuated control was maintained.  

2.2.2. Stochastic Algorithms 

Given that TSC systems are large, complex, nonlinear, and stochastic in nature (Dongbin 

et al., 2012), stochastic algorithms, which are mostly model-free, are more likely to provide 

feasible solutions to TSC problems. However, conventional stochastic algorithms, such as 

metaheuristic algorithms, have their limitations. They tend to converge to suboptimal solutions, 

and the decision-making process can also be time-consuming. These disadvantages make these 

algorithms less reliable for real-world applications. 

Lee et al. (2006) developed a real-time adaptive traffic signal control system composed of 

a genetic algorithm (GA) optimization module, an internal traffic simulation module, and a 

database management module. This system operated in an acyclic rolling horizon real-time 

manner to control traffic signals in an arterial with three intersections. Simulation experiments 

were conducted in PARAMICS, considering three scenarios with different levels of traffic 

demand, namely high, medium, and low. The performance of the proposed signal control system 

was analyzed, and the results showed that it performed efficiently in all scenarios. For example, 

when compared to the pre-timed controller, the proposed system reduced the total vehicle delay 

by 12.9% in the high-demand scenario. Moreover, the system significantly reduced the delay 

standard deviations in high and medium-demand scenarios. 

Ghanim and Abu-Lebdeh (2015) presented an innovative real-time traffic signal control 

system utilizing a combination of a GA optimizer and an artificial neural network (ANN). The 

optimizer was responsible for optimizing traffic signal timing with TSP control, while the ANN 

predicted bus arrival times taking into account dwell times at bus stops. The authors evaluated 

six different signal control systems using VISSIM on a two intersecting one-way network with 

four bus stops. Results showed that the proposed signal control system significantly reduced 

traffic delay and stops by up to 90%. Regarding transit traffic, it had the capability to reduce 

transit delay and number of stops, varied by 15% to 85%, depending on the traffic demand and 
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control type. Importantly, experimental results indicated that the proposed signal control system 

did not have an adverse impact on crossing traffic. 

García-Nieto et al. (2012) developed a network-wide signal control system that can 

optimize the duration of each phase in all traffic lights in an entire urban road network. The 

system utilized a particle swarm optimization (PSO) algorithm to maximize the number of 

vehicles reaching their destinations and minimize the total travel time. Two road networks 

located in metropolitan areas of different cities were modeled in SUMO to evaluate the 

performance of the proposed system. Results indicated that the proposed system outperformed 

two other signal control systems, namely the SUMO cycle programs generator and a random 

search algorithm. The system demonstrated improvements in the number of vehicles that reach 

their destinations as well as the mean travel time. 

2.3. Reinforcement Learning Algorithms  

The Markov Decision Process (MDP) is a mathematical framework usually used to 

model sequential decision-making problems where an agent interacts with an environment to 

maximize the reward (Sutton & Barto, 2018). The TSC problem can be formulated as an MDP 

and RL algorithms are well-suited for solving MDPs because they learn through trial and error 

by continuously updating the policies based on the rewards received. This allows the agent to 

adapt to changing states and make better decisions over time. Besides, due to the availability of 

real-time traffic data in CV environments, RL algorithms, as data-driven approaches, have 

gained significant attention as potential solutions to optimize TSC problems. The operation of an 

RL algorithm typically involves the following steps: observation of the current state of the 

environment, selection of an action based on the current policy, receipt of a reward from the 

environment, and transition to the next state. According to the received reward, the agent 

iteratively updates its policy to eventually achieve an optimum control policy. 

2.3.1. Reinforcement Learning  

RL has been utilized in TSC research since the mid-1990s, with a significant increase in 

the publication of research papers starting in 2010. The performance improvements provided by 

the use of RL as an optimization approach are compelling even in the initial stage of 

implementation (Mannion et al., 2016). 

Thorpe and Anderson (1996) proposed a traffic signal controller with the goal of 

minimizing the time taken for a fixed number of vehicles to traverse a 4 x 4 grid road network. 

To achieve this, they utilized SARSA, an RL algorithm, that employed replace traces and greedy 

action selection in the controller. The RL agent was modeled using three different state 

representations, namely, the vehicle counts representation, the fixed distance representation, and 

the variable distance representation. Simulation experiments were conducted to test the 

performance of the proposed controller. Results indicated that it could learn signal control 
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strategies that approached the optimal performance. The most effective state representation was 

found to be the fixed or variable distance methods.  

Abdulhai et al. (2003) presented a case study using Q-learning, one of the most popular 

RL algorithms, to control the traffic signal at an isolated intersection. The state information 

provided to the proposed RL agent included queue lengths on the four approaches and the 

elapsed phase time. The action was defined as the choice to remain or switch the current phase. 

The reward for the RL agent was the total vehicle delay in the queue incurred between the 

successive decision points. The findings of the study revealed that the proposed RL agent 

exhibited superiority compared to the pre-timed signal controller, especially in scenarios where 

traffic demand varied over time. This was attributed to the ability of the RL agent to adapt to 

fluctuations in traffic flow.  

El-Tantawy and Abdulhai (2010) proposed an acyclic adaptive signal control system that 

utilized Q-learning to optimize the signal plan. The action defined in the RL agent was the 

selection of the phase index, allowing for variable phase sequences in the signal controller. The 

reward was defined as the change in the total summation of the cumulative delay for all vehicles 

in the system. Furthermore, three different state representations were defined, namely, the arrival 

of vehicles in the current green direction and queue length in the red direction, the queue length, 

and the cumulative delay. To evaluate the performance of the proposed controller, a real-world 

intersection located in downtown Toronto and the traffic volume obtained in the morning peak 

hour were modeled in a simulation environment. The performance of the proposed Q-learning 

signal controller was compared to a pre-timed controller optimized using the Webster method. 

The results showed that the proposed controller consistently outperformed the pre-timed signal 

controller, regardless of the state representations and traffic demand conditions. Additionally, the 

cumulative delay representation proved to be superior to other state representations in high-

demand scenarios. 

2.3.2. Deep Reinforcement Learning  

RL was originally proposed to solve problems with discrete states and actions. However, 

it may become less effective in addressing TSC problems that have large state and action spaces. 

The integration of RL with deep learning, referred to as DRL, offers a promising approach to 

TSC optimization. In recent years, numerous research papers have been published in this area, 

highlighting the potential of DRL in TSC optimization. 

Wei et al. (2018) introduced an intelligent traffic signal controller that utilized Deep Q-

Network (DQN) with modifications named Phase Gate and Memory Palace. The state in this 

study was a combination of various factors, including the queue length, number of vehicles, 

updated waiting time of vehicles, an image representation of vehicles’ positions, current phase, 

and next phase. The action was defined as the selection of whether to keep or change the current 

phase. The reward was defined as a weighted sum of total queue length, total delay, total waiting 
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time, an indicator of phase switches, total number, and total travel time of vehicles that passed 

the intersection. Evaluation experiments were conducted on the simulation platform SUMO 

using both synthetic and real-world traffic demand data. Results showed that the proposed 

controller outperformed the other three controllers named pre-timed controller, self-organizing 

traffic light controller, and DRL for traffic light controller. Additionally, the authors investigated 

the policies learned from the real-world data and demonstrated that the proposed DRL algorithm 

could effectively accommodate the changes in traffic demand in the real world. 

Liang et al. (2019) proposed a DRL traffic signal controller that utilized a modified DQN 

algorithm to control the SPaT. To enhance its performance, the authors incorporated various 

techniques, including dueling network, target network, double Q-learning network, and 

prioritized experience replay, into the DQN agent. The state was defined as an image-like input 

that consisted of two matrices representing the position and speed of vehicles approaching the 

intersection. The action was defined as how to change the duration of every phase in the next 

cycle. The reward was defined as the change in the cumulative waiting time between consecutive 

cycles. The performance of the proposed controller was evaluated using SUMO, and results 

showed that it could reduce the average waiting time by more than 25% compared to the pre-

timed controller. Moreover, the modified DQN agent outperformed the conventional DQN agent 

in terms of learning speed and other metrics. 

Shabestary and Abdulhai (2022) proposed an innovative adaptive traffic signal controller 

that utilizes real-time traffic data obtained through CV technologies. This controller is capable of 

handling unprocessed, high-dimensional traffic data from CVs and is self-learning. A DQN agent 

with a convolutional neural network was developed to minimize vehicle delays. The real-time 

position and speed of CVs were preprocessed into an image-like structure that consisted of two 

same-sized matrices, along with the elapsed time, which was then used as the state in the DQN 

agent. The action space included all possible phases, each of which was a combination of 

nonconflicting movements. The reward was defined as the reduction of cumulative delay in 

consecutive time steps. The authors conducted comprehensive experiments to evaluate the 

performance of the proposed controller, and the results showed that it outperformed other 

alternatives, including pre-timed, actuated, and conventional Q-learning controllers. 

Furthermore, the results demonstrated the generalization and robustness of the proposed 

controller to some extent. 

2.3.3. Multi-Agent Reinforcement Learning 

In fact, intersections are not isolated from each other, the control for one intersection will 

impact other intersections in the network. Since RL-based signal controllers exhibit superior 

performance at isolated intersection scenarios, one approach is to train a centralized agent to 

control the whole network. However, it is hard for a centralized agent to scaler to a large 

network. To address the scalable issue, a feasible way is to implement multiagent reinforcement 
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learning (MARL) algorithms. The road network contains multiple intersections, it can be 

formulated as a multi-agent system, each agent controls a single intersection or a subgroup of 

intersections. Recent years, with the rapid advancement of MARL algorithms, many researchers 

have been working on applying these sophisticated algorithms to multiple intersection scenarios. 

Song and Fan (2023) introduced an innovative traffic signal control framework that 

integrates MARL algorithms for traffic control with CAV platooning techniques for vehicle 

control. The integration is designed to improve the overall traffic performance along corridors. 

The MARL algorithm utilized in this study was the state-shared MADQN. Assuming the 

presence of infrastructure to infrastructure (I2I) communication technology, each intersection 

can share its state with adjacent intersections. Therefore, the input state for each agent is a matrix 

including the state of the ego intersection along with the states of its neighboring intersections. 

This information sharing mechanism can ensure a certain degree of signal coordination between 

the intersections. Additionally, the CACC technique is leveraged to facilitate the formation of 

platoons among CAVs, thereby further enhancing traffic efficiency. A testbed corridor with 

seven intersections is built based on real-world traffic configurations. The results demonstrated 

the superiority of the proposed framework over alternative approaches, such as fixed-time 

control and actuated control. Notably, the integration of shared-state MARL and CAV 

platooning further enhances the performance compared to deploying these technologies 

separately. 

Mao et al. (2023) proposed a multi-agent attention-base soft actor-critic (MASAC) model 

to control the traffic signals along arterials. They use MASAC method to search for more 

solution space. Besides, the attention mechanism is also being integrated into their model to 

extract enriched traffic information. To assess the efficacy of their proposed mode, three 

hypothetical arterials were built using SUMO. Results showed that their proposed model 

outperformed other approaches, including the multiband-based method and various DRL 

algorithms. They also conducted comprehensive ablation experiments to investigate the 

contribution of each component within their model. The findings demonstrated the substantial 

impact of attention mechanisms on performance enhancement. Interestingly, the study revealed 

that the communication module might not be useful when employing the centralized training 

technique.  

With the goal of improving the services for both cars and buses, Yu et al. (2023) 

proposed a traffic signal controller enhanced by the MARL framework. The novelty of their 

contribution lies in the design of a unique reward function capable of simultaneously minimizing 

total vehicle delays and homogenizing bus headways. There are two essential components in the 

reward function, one reflecting the car traffic efficiency and the other representing the efficiency 

of the bus system. An adjustable weight coefficient is introduced to balance the performance of 

cars and buses. DQN, which is a very popular DRL algorithm in TSC research area, is utilized in 

this study. The authors firstly explored the tradeoff between car and bus traffic performance by 
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varying the weight coefficient in the reward function, identifying the optimal value for the 

weight. Subsequently, extensive experiments were conducted to validate the superiority of the 

proposed controller. More importantly, unlike general research in this field, the authors used 

different networks for training and testing, demonstrating the scalability and transferability of 

their proposed controller. 

Table 2-1 Literature Review on Optimization Algorithms in TSC  

Work Algorithm Scenario Simulator 
Result 

comparison 

Thorpe and 

Anderson 

(1996) 

SARSA 
4 x 4 grid 

network 
Not specified 

Pre-timed 

controller 

Abdulhai et 

al. (2003) 
Q-learning 

Isolated 

intersection 
Not specified 

Pre-timed 

controller 

Lee et al. 

(2006) 
GA 

Three-

intersection 

corridor 

PARAMICS 

Pre-timed 

controller; 

 

El-Tantawy 

and Abdulhai 

(2010) 

Q-learning 
Isolated 

intersection 
PARAMICS 

Pre-timed 

controller 

García-Nieto 

et al. (2012) 
PSO 

A 0.75km2 

network in a 

metropolitan 

SUMO 

Pre-timed 

controller; 

Random search 

controller 

He et al. 

(2014) 
MILP 

Two-intersection 

corridor 
VISSIM 

Actuated 

coordination 

controller 

Ghanim and 

Abu-Lebdeh 

(2015) 

GA 

A two 

intersecting one-

way network 

VISSIM 

Pre-timed 

controller; 

Actuated 

controller 

Feng et al. 

(2015) 
DP, Enumeration 

Isolated 

intersection 
VISSIM 

Actuated 

controller 
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Wei et al. 

(2018) 
Modified DQN 

Isolated 

intersection 
SUMO 

Pre-timed 

controller; 

Actuated 

controller; 

DQN controller 

Li and Ban 

(2019) 
MINLP, DP 

Isolated 

intersection 
VISSIM 

Actuated 

controller 

Liang et al. 

(2019) 

double dueling 

DQN 

Isolated 

intersection 
SUMO 

Pre-timed 

controller; 

Adaptive 

controller; 

DQN controller 

Shabestary 

and Abdulhai 

(2022) 

DQN 
Isolated 

intersection 
PARAMICS 

Pre-timed 

controller; 

Adaptive 

controller; 

Q-learning 

controller 

Song and Fan 

(2023) 
MADQN 

Seven-

intersection 

corridor 

SUMO 

Pre-timed 

controller; 

Actuated 

controller 

Mao et al. 

(2023) 
MASAC 

Three-

intersection 

corridor, six-

intersection 

corridor, ten-

intersection 

corridor. 

SUMO 

multiband-based 

controllers; 

DRL-based 

controllers 

Yu et al. 

(2023) 
Independent DQN 

Five-intersection 

corridor, ten-

intersection 

SUMO 
Pre-timed 

controller; 
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corridor, two 

crossing 

corridors with 

nine 

intersections. 

Longest queue 

first controller; 

Max pressure 

controller; 

Centralized RL-

based controller 

2.4. Summary 

A comprehensive review and synthesis of the current state-of-the-art research related to 

TSC and TSP have been discussed and presented in the preceding sections. This is intended to 

provide a solid reference and assistance for selecting optimization methods for transit signal 

priority stratiges and for developing effective adaptive signal controllers for future tasks. 
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Chapter 3. Methodology 

3.1. Single-Agent Reinforcement Learning 

3.1.1. Markov Decision Process Formulation 

The Markov Decision Process (MDP) is a mathematical framework usually used to 

model sequential decision-making problems where an agent interacts with an environment to 

maximize the reward signal. During the interaction, the agent takes actions based on the current 

state of the environment, and in response, the environment presents a new state as well as a 

reward (Sutton & Barto, 2018). The traffic signal control problem can be formulated as an MDP 

in which the state, action, and reward are properly defined. The interaction between the traffic 

signal control agent and the traffic environment can be mathematically described by a five-tuple 

〈𝑆, 𝐴, 𝑃, 𝑅, 𝛾〉, where 𝑆 (state space) generally represents the set of traffic information obtained 

from the environment, 𝐴 (action space) represents the possible operations to control the SPaT, 𝑃 

is the state transition matrix determining the next state based on the current state and action, 𝑅 is 

the reward received from the environment after taking the action, and 𝛾 is the discount factor. To 

formulate the TSC problem as MDPs, it is essential to properly define the state space, action 

space, and reward function. The state includes information such as queue length, cumulative 

waiting time, number of vehicles per lane, and phase duration. Actions can correspond to 

different signal control strategies, such as selecting possible green phases, keeping or changing 

the current phase, and updating the phase duration with a predefined length. The reward function 

can be defined to reflect various objectives, e.g., minimizing delays, reducing fuel consumption, 

and improving safety (Haydari & Yilmaz, 2022). Reinforcement learning algorithms are well-

suited for solving MDPs because they learn through trial and error by continuously updating the 

policies based on the rewards received. This allows the agent to adapt to changing states and 

make better decisions over time. The operation of an RL algorithm typically involves the 

following steps: observation of the current state of the environment, selection of an action based 

on the current policy, receipt of a reward from the environment, and transition to the next state. 

According to the received reward, the agent iteratively updates its policy to eventually achieve 

an optimum control policy.  

3.1.1.1. State space 

Two types of state spaces are used in this study: the vehicle-based array state, and the 

combined state consisting of a vehicle-based array and a feature-based vector, as illustrated in 

Figure 3-1. 

For the vehicle-based array state space, the input traffic states used in the study are the 

passenger occupancy and speed of CVs approaching the intersection, which is formatted into 

image-like representations by using the discrete traffic state encoding (DTSE) method. DTSE is 
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favored as it offers the most complete traffic information at the intersection. Additionally, real-

time, high-resolution traffic data can be easily obtained via CV technology. 

Specifically, each approaching lane within a certain distance 𝐿𝑙𝑎𝑛𝑒 from the intersection 

stop line is discretized into small cells with a specific length 𝑑, which is usually the average 

headway distance between stopped vehicles. The state array is formed by assigning the 

information of each vehicle to the corresponding cells, as illustrated in Figure 3-1. The location 

of each vehicle is identified based on the position of its head. Therefore, even when a vehicle 

covers multiple cells on the road, there will be no problem of being recognized in multiple cells. 

The state array consists of two tables, resulting in a state space of 2 × (𝐿𝑙𝑎𝑛𝑒 𝑑⁄ ) × 𝑁𝑙𝑎𝑛𝑒. One 

table is used to store the passenger occupancy and the other is used to store the speed of each 

CV. This vehicle-based information can be obtained via CV technology. Please note that the 

vehicle-based array only contains information from CVs, as the controller cannot communicate 

with non-CVs (NCVs) to gather their information.  

The combined state space utilizes fusion data obtained from multiple data sources. A 

feature-based vector is combined with the previously defined vehicle-based array. The vector has 

a length of 𝑁𝑙𝑎𝑛𝑒 corresponding to the number of lanes. In this study, the feature value used in 

the vector is the number of queued vehicles in each lane. This information is assumed to be 

extractable from images captured by cameras located at the intersection, leveraging the 

advancements of computer vision techniques in the field of transportation. 

In the isolated intersection scenario, a typical four-approach intersection with four lanes 

in each approach is investigated. To capture the traffic information effectively, we set the 

detection range 𝐿𝑙𝑎𝑛𝑒 to 350 meters and the cell length 𝑑 to 7 meters. Therefore, the vehicle-

based array has a size of 2*50*16, and the feature-based vector has a size of 16. 
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Figure 3-1 Illustration of State Representations for Isolated Intersection in the Study 

3.1.1.2. Action space 

In this study, two types of action spaces are defined: discrete action space and multi-

discrete action space. The discrete action space only includes possible phases, while the multi-

discrete action space contains both possible phases and timings. 

Except for right-turn movements, there are eight traffic movements in a typical four-

approach intersection, namely east through (E), west through (W), east left-turn (EL), west left-

turn (WL), north through (N), south through (S), north left-turn (NL), and south left-turn (SL). 

These movements can be combined into eight non-conflicting movements, corresponding to 

eight valid phases. Each phase indicates that the corresponding movements will be set to green, 

while other movements except right-turn movements will be set to red. Right turns are permitted 

all the time with a lower right-of-way. 

The discrete action space has eight actions, representing the eight different phases：𝐴 =

 {(𝑁𝐿, 𝑆𝐿), (𝑁, 𝑁𝐿), (𝑆, 𝑆𝐿), (𝑆, 𝑁), (𝐸𝐿, 𝑊𝐿), (𝐸, 𝐸𝐿), (𝑊, 𝑊𝐿), (𝐸, 𝑊)}. At each decision step, 

an action is selected from this set. If the phase represented by the action is the same as the 

current phase, the green time is extended by one second. Otherwise, the signal is switched to the 

chosen phase. Please note that the switching operation includes a transition time, which includes 

the yellow time, all-red time, and minimum green time. During the transition time, the signal 
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controller remains on hold and does not take any action. Otherwise, it makes decisions every 

second. In this study, the yellow time is set to 3 seconds, the all-red time is set to 2 seconds, and 

the minimum green time is set to 5 seconds. 

The multi-discrete action space is defined as the cartesian product of two discrete action 

spaces, denoted as 𝐴 =  {(𝑛, 𝑡)|𝑛 ∈ 𝑁𝑝ℎ𝑎𝑠𝑒 and 𝑡 ∈ 𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛}. The 𝑁𝑝ℎ𝑎𝑠𝑒 represents the set of 

valid phases and is the same as the previously mentioned action space, 𝑁𝑝ℎ𝑎𝑠𝑒 = {0,1, … ,7}. The 

𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  represents the set of time durations for determining the green time of the selected 

phase. In this study, the phase durations range from 0 to 45 seconds, which aligns with the range 

used in the ASC. Considering that the minimum green time is set to 5 seconds, the range of valid 

phase durations, denoted as 𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, is defined as {0,1, … ,40}. Therefore, the multi-discrete 

action space defined in this study is 𝐴 =  {(𝑛, 𝑡)|𝑛 ∈ {0,1, … ,7} and 𝑡 ∈ {0,1, … ,40}}. At each 

decision step, a two-element tuple is selected. The first element indicates the phase, and the 

second element indicates the duration of that phase. The phase-switching logic remains the same 

as in the discrete action space. The key distinction is that in this action space, the action not only 

determines the next phase but also specifies the duration of that phase. Therefore, the decision-

making frequency is significantly reduced. 

3.1.1.3. Reward function 

In the field of traffic signal control research, various reward functions have been utilized, 

including the negative number of vehicles in queues, the negative cumulative queue length, and 

the negative cumulative delay. In this study, the reward function used is the reduction in 

cumulative person delay between sequential decision steps. 

 𝐶𝑃𝐷𝑘 = ∑ 𝑑𝑛
𝑘

𝑛∈𝑆𝑘 ∗ 𝑂𝑛
𝑘  (3.1) 

 𝑟𝑘 = 𝐶𝑃𝐷𝑘−1 − 𝐶𝑃𝐷𝑘 (3.2) 

Where 𝑘 represents the current decision step. 𝑛 is the CV index. 𝑆𝑘  denotes the set of 

CVs at decision step 𝑘. 𝐶𝑃𝐷𝑘 means the cumulative person delay in decision step 𝑘. 𝑟𝑘 denotes 

the reward in decision step 𝑘. At each decision step 𝑘, the controller obtains 𝑆𝑘, which is the set 

of CVs approaching the intersection within the given distance 𝐿𝑙𝑎𝑛𝑒, and 𝑑𝑛
𝑘, which represents 

the delays of CV 𝑛 at step 𝑘, as long as 𝑂𝑛
𝑘, which represents the passenger occupancy of CV 𝑛. 

The cumulative person delay of CVs at step 𝑘, denoted as 𝐶𝑃𝐷𝑘, is calculated using equation 

3.7. The cumulative person delay of CVs at step 𝑘 − 1, denoted as 𝐶𝑃𝐷𝑘−1, is stored in the 

controller, and the reward at step 𝑘, denoted as 𝑟𝑘, is calculated using equation 2. It is worth 

noting that when the passenger occupancy of all CVs is set to 1 regardless of their vehicle type, 

the DRL agent is a typical traffic signal controller without TSP. 
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3.1.2. Deep Q-Network 

Deep Q-Network (Mnih et al., 2015), as far as I know, is the most popular DRL 

algorithm used in the field of traffic signal control. DQN is a value-based RL algorithm, where 

the state-action value function, known as the Q-function, plays a critical role. The Q-function 

evaluates the quality of a given action in a particular state. The optimal Q-function can be 

expressed by the following equation.  

 𝑄∗ (𝑠, 𝑎) = 𝑚𝑎𝑥𝜋𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2+. . . |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (3.3) 

Where 𝑠 refers to the current state, 𝑎 is the current action, 𝑟 is the reward. The 𝑄∗ (𝑠, 𝑎) 

is the maximum value of the state-action pair (𝑠, 𝑎) as determined by the policy 𝜋. This value is 

calculated by summing the present values of all future rewards in each time step 𝑡. To determine 

the present value of a future reward, a discount rate denoted as 𝛾, is introduced. 

The optimal Q-function follows an important principle known as the Bellman equation. 

 𝑄∗ (𝑠, 𝑎) = 𝔼𝑠′[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄∗ (𝑠′, 𝑎′)|𝑠, 𝑎] (3.4) 

This equation is straightforward. If we know 𝑄∗ (𝑠′, 𝑎′), which represents the optimal 

value of the next state-action pair (𝑠′, 𝑎′), then 𝑄∗ (𝑠, 𝑎) can be achieved by selecting the action 

that maximizes the expected value of 𝑟 + 𝛾𝑄∗ (𝑠′, 𝑎′). 

By iteratively using the Bellman equation, the optimal Q value can be estimated. 

However, in many scenarios, it may be impractical to employ this equation for value iteration. 

For example, when the state/action space is large for some real-world problems, the value 

iteration process can become computationally intensive. Therefore, algorithms that utilize 

functions, such as linear and non-linear functions, to approximate the Q-function have been 

developed. When a deep neural network with weights 𝜃, such as the deep convolutional neural 

network used in this study, is employed to approximate the Q value, it is referred to as a Deep Q-

network. 

 𝑄(𝑠, 𝑎; 𝜽) ≈ 𝑄∗ (𝑠, 𝑎) (3.5) 

The loss function used to update the weights of the neural network is as follows: 

 𝐿𝑜𝑠𝑠 = (𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜽) − 𝑄(𝑠, 𝑎; 𝜽))2 (3.6) 

As depicted in Figure 3-2, a standard DQN agent training process consists of two 

important components, namely the experience relay and the target network. Training large neural 

networks may lead to divergence, as subsequent updates can be correlated. To address this issue, 

the experience replay is used, which is operated in the following manner. 
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Figure 3-2 The Structure of DQN Used in the Study 

➢ Initialize a memory dataset 𝐷.  

➢ Store the experience (𝑠, 𝑎, 𝑟, 𝑠′) obtained from the environment for each time step into 

the dataset. 

➢ Sample a mini-batch of experiences randomly and uniformly from 𝐷. 

➢ Train the agent using the mini-batch of experiences instead of the most recent 

experiences from the environment. 

➢ The memory dataset 𝐷 stores only a fixed number of recent experiences. 

To avoid oscillations or divergence caused by using the same weights 𝜃 to calculate both 

the target value and predicted value in the loss function, a separated network called the target 

network 𝑄̂ is employed to calculate the target value during the training process. Therefore, the 

loss function is reformulated as follows. 

 𝐿𝑜𝑠𝑠 = (𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜽−) − 𝑄(𝑠, 𝑎; 𝜽))2 (3.7) 

The target network works as follows: every 𝐶 decision step, the weights in the network 𝑄 

are copied and used to update the target network 𝑄̂. The target values 𝑦𝑖  for the following 𝐶 

updates are then generated based on the updated target network 𝑄̂. 
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3.1.3. Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is a model-free actor-critic DRL algorithm proposed 

by Schulman et al. (2017). PPO is improved based on Trust Region Policy Optimization (TRPO) 

introduced by Schulman, Levine, et al. (2015). The actor-critic algorithm has two key 

components, namely the actor and the critic. The actor, usually refers to as the policy network in 

DRL, is responsible for selecting actions based on the current state, with the goal of learning an 

optimal policy. The critic, often refers to as the value network in DRL, evaluates the quality of 

the action selected by the actor. 

The policy can be interpreted as a set of rules used by the agent to choose actions based 

on the current state. The objective of the actor is to maximize the expected cumulative reward by 

optimizing the policy. This optimization process can be expressed as follows: 

 𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝐽(𝜋)  (3.8) 

where 𝜋∗  denotes the optimal policy, and the function 𝐽(𝜋)  is used to calculate the 

expected cumulative reward. This optimization problem is solved by gradient ascent. In DRL, 

the policy is parameterized by a set of parameters, such as the weight and bias of a neural 

network. Therefore, it is often expressed as 𝜋𝜃, where 𝜃 refers to the parameter set. The gradient 

ascent process iteratively updates the parameters 𝜃 using the policy gradient ∇𝜃𝐽(𝜋𝜃) with a step 

size 𝛼, which can be expressed as the following equation: 

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃𝐽(𝜋𝜃)|𝜃𝑘
  (3.9) 

The most widely used equation to estimate the policy gradient is shown as follows: 

 ∇𝜃𝐽(𝜋𝜃) ≈ E𝑡̂[∇𝜃 log 𝜋𝜃 (𝑎𝑡|𝑠𝑡)𝐴𝑡̂]  (3.10) 

where E𝑡̂  is the expectation that can be calculated using a batch of samples. 𝐴𝑡̂  is an 

estimator of the advantage function at timestep 𝑡, which evaluates the quality of taking a specific 

action in a given state compared to the expected average performance. We employ Generalized 

Advantage Estimation (GAE) to approximate the advantage function, For implementation details 

of GAE, please refer to the paper of Schulman, Moritz, et al. (2015).  

In the implementation of the policy optimization method, a loss function is constructed to 

facilitate the automatic differentiation process. The loss function is as follows: 

 𝐿𝑃𝐺(𝜃) = E𝑡̂[log 𝜋𝜃 (𝑎𝑡|𝑠𝑡)𝐴𝑡̂]  (3.11) 
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However, in practice, this vanilla policy gradient algorithm may lead to unstable policy 

updates. PPO is one of the algorithms developed to address this issue, which uses a simple clip 

operation to constrain the update size. The refined loss function is as follows: 

 𝐿𝐶𝐿𝐼𝑃(𝜃) = E𝑡̂[min(
𝜋𝜃𝑛𝑒𝑤

(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡̂ , 𝑐𝑙𝑖𝑝 (
𝜋𝜃𝑛𝑒𝑤

(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 1 − 𝜀, 1 + 𝜀) 𝐴𝑡̂)]  (3.12) 

where 𝜋𝜃𝑛𝑒𝑤
(𝑎𝑡|𝑠𝑡) 𝜋𝜃𝑜𝑙𝑑

(𝑎𝑡|𝑠𝑡)⁄  denotes the probability ratio between the new policy 

and the old policy, and 𝜀 is a hyperparameter introduced to constrain the update size, usually set 

to 0.2. In this way, the ratio is constrained within a range determined by 𝜀, therefore limiting the 

magnitude of policy updates and preventing drastic changes that could lead to instability. 

Additionally, the loss function is augmented by incorporating the entropy bonus to encourage 

exploration. Entropy is used to measure the uncertainty or randomness of a policy. Higher 

entropy values indicate more diverse action selections. The entropy can be calculated using the 

following equation: 

 𝐻(𝜋𝜃(∙ |𝑠𝑡)) = − ∑ 𝜋𝜃(𝑎|𝑠𝑡) log 𝜋𝜃(𝑎|𝑠𝑡)𝑎∈𝐴   (3.13) 

Therefore, the loss function utilized for the policy optimization is formulated as follows: 

 𝐿𝑎𝑐𝑡𝑜𝑟_𝑡(𝜃) = E𝑡̂[𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) − 𝑐𝐻(𝜋𝜃(∙ |𝑠𝑡))]  (3.14) 

where 𝑐 is the coefficient to adjust the impact of the entropy value. The critic network is 

denoted as  𝑉𝜔, with 𝜔 as the parameters of the critic network. The goal of the critic network is to 

minimize the mean squared error, which is given by the following equation: 

 𝐿𝑐𝑟𝑖𝑡𝑖𝑐_𝑡(𝜔) = mean ∑(𝑟𝑡 + 𝛾𝑉𝜔(𝑠𝑡+1) − 𝑉𝜔(𝑠𝑡))2  (3.15) 

where 𝑉𝜔(𝑠𝑡) denotes the value based on the state 𝑠𝑡 , which is the output of the critic 

network. 𝛾 is the discount factor with a range of [0, 1], and 𝑟𝑡 is the immediate reward received 

from the environment at time step 𝑡. 

3.1.4. Neural Network Construction 

Based on the state space and the DRL algorithm employed in the study, the neural 

network (NN) consists of three components: the feature extractor, the actor network, and the 

critic network. The feature extractor takes the observed state information from the environment 

as input and generates feature vectors. The actor network and the critic network process the 

output of the feature extractor, generating actions and values, respectively. The detailed 

architecture of the NN is depicted in Figure 3-3.  
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In the feature extractor, we employ a convolutional neural network (CNN) similar to 

what was adopted by Mnih et al. (2015), with slight modifications to accommodate the size of 

the state space in our study. This CNN consists of five layers, including three convolutional 

layers, one flatten layer, and one fully connected layer. The first layer has 32 filters with a size of 

2*4 and a stride of 1*2. The second layer has 32 filters with a size of 2*3 and a stride of 1*2. 

The third layer has 32 filters with a size of 2*2 and a stride of 1*1. The output of the fourth 

layer, after being flattened, is a vector of length 3008. This vector is then processed by a fully 

connected layer with 128 units, resulting in an output vector of length 128. When the combined 

state space is used as input, the feature-based vector is concatenated with the output of the fifth 

layer, producing an output vector of length 144. ReLU activation functions are used in the CNN. 

The actor network and the critic network have the same architecture, consisting of two fully 

connected layers with 64 units and a ReLU activation function each, followed by an output layer. 

When the DQN algorithm is adopted, only the critic network is used to output the Q value. When 

employing the PPO algorithm, both the actor and critic network are used. 

 

Figure 3-3 Illustration of the Neural Network Structure for Single-Agent PPO 

3.2. Multi-Agent Reinforcement Learning  

3.2.1. Decentralized Partially Observable Markov Decision Processes Formulation 

The traffic signal control problem for multiple intersections can be formulated as a 

Decentralized Partially Observable Markov Decision Process (DEC-POMDP). In this 

framework, decentralization involves the utilization of multiple agents, where each agent can 

only perceive a certain range of the environment and control either a single intersection or a 

subset of intersections. Within this system, each agent operates according to its individual 

Partially Observable Markov Decision Process (POMDP) and interacts with each other. A DEC-
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POMDP can be defined as a tuple ⟨𝑆, 𝐴, 𝑂, 𝑅, 𝑃, 𝑛, 𝛾⟩. 𝑆 is the state space, represents the set of 

possible states in the system. 𝐴 is the action space, 𝐴 = {𝑎𝑖, … , 𝑎𝑛} is the joint action of all the 

agents. 𝑂 is the local observation space, 𝑜𝑖  =  𝑂(𝑠; 𝑖) denotes the partially observed information 

specific to agent 𝑖. 𝑅(𝑠,  𝐴) defines the shared reward function, which calculates the feedback 

according to the current state 𝑠 and the joint action 𝐴. 𝑃(𝑠′|𝑠,  𝐴) is the transition probability 

from 𝑠 to 𝑠′ given the joint action 𝐴. 𝑛 is the number of agents involving the DEC-POMDP. 𝛾 is 

the discount factor, which functions similarly to the discount factor in an MDP. 

3.2.1.1. Local observation  

The local observation is a vehicle-based array state, which is the same as the setting in 

the isolated intersection scenario in section 3.1.1.1. In the DEC-POMDP framework, each agent 

𝑖 obtain its local observation 𝑜𝑖,𝑡 at decision time step 𝑡.  

3.2.1.2. Global state  

The global state has two components and can be denoted as 𝑆𝑡 = {𝑜𝑡, 𝑝𝑡}. 𝑜𝑡 is the set of 

the local observations from all the agents at decision step 𝑡, which can be expressed as 𝑜𝑡 =

{𝑜1,𝑡, … , 𝑜𝑛,𝑡}. 𝑝𝑡 is the set of the phase state of all the agents at decision step 𝑡, which can be 

expressed as 𝑝𝑡 = {𝑝1,𝑡, … , 𝑝𝑛,𝑡}.  Each phase state is represented using the one-hot encoding 

technique, forming a vector with a length equal to the number of phases plus a yellow phase and 

an all-red phase. For example, in a typical four-leg intersection with eight phases, the encoded 

vector would have a length of ten. 

 

Figure 3-4 Illustration of Global State Representations for Corridor in the Study 

3.2.1.3. Action space 

Two types of action spaces are utilized in the study, namely discrete action space and 

multi-discrete action space. The settings of these action spaces are the same as defined in the 
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isolated intersection scenario in section 3.1.1.2. Each agent 𝑖 selects its action 𝑎𝑖,𝑡  at decision 

step 𝑡. 

3.2.1.4. Reward function 

In multi-agent scenarios, the reward function for each agent is still the difference in the 

cumulative person delay, the calculation process also follows the definition in section 3.1.1.3. 

3.2.2. Multi-Agent Actor Critic 

Traditionally, MARL can be implemented in two frameworks, i.e., centralized and 

decentralized. In centralized implementation, a single policy is trained to generate joint actions 

for all agents. However, this framework may face scalability challenges. On the other hand, 

decentralized implementation involves each policy optimizing its own reward independently. 

While it can address scalability problems, it may suffer from instability issues due to the non-

stationary problem.  

We follow the study conducted by Yu et al. (2022), utilizing PPO as the training 

algorithm and employing the centralized training and decentralized execution (CTDE) 

framework in this study, as shown in Figure 3-5. In the CTDE framework, global observations 

are used as input for the centralized critic network during the training stage, outputting a more 

accuracy critic values, and therefore providing more precise guidance for the gradient update of 

the actor network. This strategy effectively mitigates the non-stationary issues. During the 

execution stage, only local observations are needed to generate actions for each agent, providing 

a robust solution to scalability concerns. The gradient update mechanism in this framework can 

be expressed mathematically as follows (Lowe et al., 2017). 

 ∇𝜃𝑖
𝐽(𝜋𝜃𝑖

) ≈ E[∇𝜃𝑖
log 𝜋𝑖 (𝑎𝑖|𝑜𝑖)Q𝑖

𝜋(s, 𝑎1, … , 𝑎𝑛)] (3.16) 

The above equation is derived from the classical policy gradient equation employed in 

policy-based RL. However, a key difference lies in the computation of Q values, where inputs 

are the global state 𝑠 and the joint actions of all agents, 𝑎1, … , 𝑎𝑛. Consequently, the Q value 

function takes the form of a centralized function Q𝑖
𝜋(s, 𝑎1, … , 𝑎𝑛). In this study, we opt for the 

advantage function and employ the GAE method to approximate advantages. 
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Figure 3-5 Illustration of Centralized Critic and Decentralized Actor 

3.2.3. Neural Network Construction 

The neural network structure employed in this study is shown in Figure 3-6. The are also 

three major components, namely feature extractor, actor network, and critic network. The critic 

network receives a concatenated vector that incorporates the outputs of feature extractors along 

with the phase states of all agents. It then computes advantage values for each actor, forming a 

centralized critic network. This centralized critic network assesses the effectiveness of actions 

and guides the optimization process of the actor network. On the other hand, the actor network 

takes as input the output vector from the corresponding feature extractor of an individual agent. 

The output of the actor network is a vector containing probabilities for each possible action for 

the specific agent. Operating in a decentralized manner, it focuses solely on the local 

observations of each agent. 
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Figure 3-6 Illustration of the Neural Network Structure for Multi-Agent PPO 
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Chapter 4. Isolated Intersection 

This chapter focuses on the experimental settings and result analyses regarding isolated 

intersection scenarios. 

4.1. Traffic Configuration 

In order to evaluate the performance of the proposed traffic signal controllers, a 

simulation testbed is built using Simulation of Urban MObility (SUMO), an open-source traffic 

simulation software that can be controlled via the Traffic Control Interface (TraCI) by Python. A 

typical four-approach intersection of Central Avenue and Eastway Drive in Charlotte, North 

Carolina, U.S.A. is selected as the test intersection, as shown in Figure 4-1. Each approach has 4 

lanes. In the north and southbound approaches, there are two lanes for through traffic and one 

exclusive lane each for left-turn and right-turn traffic, respectively. In the east and westbound 

approaches, there are two dedicated left-turn lanes, one through lane, and one right-turn and 

through shared lane. The yellow time is set to 3 seconds and the red clearance time is 2 seconds. 

The speed limit for the south-north road is 45 mph and for the east-west road is 35 mph. Buses 

operate on a north-south route only. 

 

Figure 4-1 Layout for the Test Isolated Intersection 

Table 4-1 Traffic Volume of Each Travel Direction, veh/h 

Time  

period 

SB WB NB EB 

R T L R T L R T L R T L 

PM Peak 176 793 88 68 341 206 325 883 180 193 547 246 

Off-peak 152 707 36 40 319 235 122 541 138 128 197 91 
Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; T=Through, L=Left turn. 
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4.2. Simulation Settings 

The intelligent driving model (Treiber et al., 2000) and LC2013 Model (Erdmann, 2015) 

are employed to control the longitudinal and lateral movements of the vehicle, respectively. The 

car-following and lane-changing parameters are the same for both connected and unconnected 

vehicles. For traffic demand, the peak hour and off-peak hour volumes at the test intersection are 

used. The peak hour is 5 - 6 PM on Wednesday, April 21, 2021, and the off-peak hour is 9 - 10 

AM that day. The traffic volume data is obtained from the Charlotte Department of 

Transportation (CDOT) and is presented Table 4-1. The traffic flows generated in the simulation 

follow the Poisson distribution. Each simulation run lasts one hour, with a ten-minute warm-up 

period. 

Six traffic signal controllers are developed based on corresponding signal control 

strategies. Specific scenarios are established based on these basic simulation environments by 

considering factors such as traffic demand, bus occupancy, CV market penetration rate (MPR), 

and bus arrival headway. For simplicity, the passenger occupancy of cars is set to be one 

passenger per vehicle. The passenger occupancy of buses is also set as a constant, but it varies 

according to the specific scenario settings. The basic simulation environment conditions and the 

corresponding signal control strategies are detailed as follows.  

 

Figure 4-2 Signal Phase Program Used in the Research 

• Pretimed Signal Controller (PSC): In this controller, a stage-based phase program is used, 

as shown in Figure 4-2(b). The signal timing for each phase is calculated using the Webster 

method (Koonce, 2008). Both buses and cars are human-driven vehicles (HDVs). 

• Actuated Signal Controller (ASC): A fully actuated signal control strategy is adopted in 

this controller. A typical National Electrical Manufacturers Association (NEMA) phase 

diagram is adopted, and the phase sequence is shown in Figure 4-2(a). The minimum and 

maximum green time are set following the signal plan obtained from the Charlotte 

Department of Transportation. Both buses and cars are HDVs. 
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• Actuated Signal Controller with TSP Using the Traditional Detector (ATSP-T): In this 

controller, the bus detectors are placed 100 meters before the stop line in the south and north 

approaches. When a bus crosses the detector, the signal will be switched to the 

corresponding phase. Otherwise, the SPaT is controlled by fully actuated control strategy. 

The buses and cars are HDVs. 

• Actuated Signal Controller with TSP Using CV (ATSP): Buses are CVs, and no bus 

detector is installed. When a bus approaches the intersection within 100 meters, the signal 

will be switched to the corresponding phase. Otherwise, the SPaT is controlled by fully 

actuated control strategy. The cars are HDVs. 

• GA Optimized Signal Controller with TSP (GA-TSP): The stage-based signal phase 

shown in Figure 4-2(b) is adopted in the GA optimizer. The decision variable is the duration 

of green time for each phase. The minimum green time for the left turn phases is 6 seconds 

and for the through phases it is 12 seconds. The maximum green time is 20 seconds for the 

left turn phases and 35 seconds for the through phases. Accordingly, the cycle length ranges 

from 56 seconds to 130 seconds. Buses are CVs, and the MPR of cars varies from 20% to 

100% in 20% intervals. For the parameters related to the genetic algorithm, the maximum 

generation is set to 250, the population size is 20, the probability of mutation is 0.7, and the 

probability of crossover is 0.7. Elitism is applied to retain the best solution in a generation. 

• DQN signal controller with TSP (DQN-TSP): In this controller, the SPaT is controlled by 

a DQN agent. All vehicles, including both buses and cars, are CVs, and hence, their real-

time positions and speeds are available. The communication range between CVs and the 

DQN agent is set to 350 meters. Note that in scenarios where the MPR is below 100%, the 

states of unconnected vehicles are not considered by our controller.  

In addition, we delve into the problem of robustness enhancement of the DRL-based 

traffic signal controllers in mixed traffic environments. To this end, we have further developed 

four DRL-based signal controllers, outlined as follows: 

• Double DQN Signal Controller (DDQNSC): A DRL agent is implemented to control the 

traffic signal. The control algorithm employed in the agent is Double DQN (DDQN), which 

is known for its improved stability compared to the vanilla DQN algorithm. For detailed 

implementation of DDQN, please refer to the papers written by Mnih et al. (2015) and Van 

Hasselt et al. (2016). In this agent, the state space is the vehicle-based array state, the action 

space is the discrete action space, and the reward function is defined as described in section 

3.2.1.1.  

• PPO Signal Controller (PPOSC): PPOSC utilizes the same state space, action space, and 

reward function as in DDQNSC, but the control algorithm is PPO. 



 

 

29 

 

• PPO Signal Controller with Multi-discrete Action (PPOSC-M): PPOSC-M utilizes the 

multi-discrete action space. Other than that, the state space, reward function, and control 

algorithm are the same as in PPOSC. 

• PPO Signal Controller with Multi-discrete Action and Combined State (PPOSC-M-C): 

PPOSC-M-C utilizes both the multi-discrete action space and the combined state space. The 

reward function and the control algorithm remain the same as in PPOSC. 

4.3. Training 

The DQN-TSP agent’s experience is stored in a replay memory, with a capacity of 

50,000 experiences, following a First-in-First-Out storage rule. The discount factor for the agent 

is set to 0.65, and the batch size for updating the model is set to 32. The training process employs 

the Adam optimizer with a learning rate of 0.001. The action selection process follows an ε-

greedy policy, where 𝜀 decreases as the number of episodes increases. The equation used to 

determine 𝜀 is presented below. 

𝜀 =  0.01 +  (0.9 − 0.01)  ∗  𝑒𝑥𝑝(−0.1 ∗  𝑒𝑝𝑖𝑠𝑜𝑑𝑒)                            (4.1) 

The DQN-TSP agent employs a neural network consisting of three convolutional layers 

and three fully connected layers, as outlined in Table 4-2. The input obtained from the simulation 

testbed is an image-like representation with dimensions of 50*16*2, and the output is 8 actions 

representing 8 possible phases.  

Table 4-2 The Neural Network Structure of DQN-TSP 

Layer Filter size Stride Num Filters Activation 

Conv1 2*4 1*2 32 ReLU 

Conv2 2*3 1*2 32 ReLU 

Conv3 2*2 1*1 32 ReLU 

Fc4   128 ReLU 

Fc5   64 ReLU 

Fc6   8 Linear 

The simulations are run on a laptop equipped with an AMD Ryzen 7 5800H processor, 32 

GB of RAM, an NVIDIA GeForce RTX 3070 Laptop GPU, and the Windows 10 operating 

system. Two DQN-TSP agents are trained, one based on the peak hour traffic demand, and the 

other based on the off-peak hour traffic demand. The training time required for the peak agent 

and the off-peak agent is 6 hours and 3 hours, respectively. The training curves are shown in 

Figure 4-3. 
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Figure 4-3 Episode Reward Curves for Peak and Off-peak DQN-TSP Agents 

These DDQSC, PPOSC, PPOSC-M, PPOSC-M-C are also trained before evaluation to 

ensure stable performance. Specifically, they have been trained using both peak and off-peak 

demand scenarios with 100% MPR, generating a total of eight trained controllers. Python 

libraries used to implement these controllers include TracI, Gymnasium, Pytorch, and Stable-

baseline3. The Adam (adaptive moment estimation) optimizer is employed in the training 

process. The hyperparameters of both DDQN and PPO have been well-tuned, and their values 

are presented in Table 4-3. 

Table 4-3 Hyperparameters Used for DDQN and PPO 

Hyperparameter DDQN PPO 

Training steps 400,000 400,000 

Discount factor 0.65 0.65 

Learning rate 0.0003 0.0001 (actor), 0.00005 (critic) 

Buffer size 50,000 - 

Batch size 32 64 
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Target update interval 200 - 

Exploration rate Decrease from 1 to 0.01 - 

Clip range - 0.2 

Entropy coefficient - 0.01 

Max gradient update - 0.5 

 

Their training performance under both peak and off-peak demand with 100% MPR is 

shown in Figure 4-4. While all controllers can converge to similar rewards, the PPO algorithm 

exhibits faster convergence and more stable performance compared to the DDQN algorithm, 

particularly in peak traffic conditions. The utilization of the multi-discrete action space 

effectively accelerates the training process. Additionally, employing both the multi-discrete 

action space and the combined state space ensures a more stable training performance. 

 
Figure 4-4 Mean Episode Reward Curves for DRL-based TSC Controllers under Peak and 

Off-peak Conditions 

4.4. Result Analyses 

The experimental results are presented in two sections. The first section focuses on the 

performance of the DRL-based signal controllers concerning TSP strategy. The second section 
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focuses on evaluating the robustness of DRL-based signal controllers in mixed traffic 

environments, without considering TSP. 

4.4.1. TSP Performance Evaluation 

The performance metrics used to evaluate traffic performance are average bus delay, 

average car delay, and average person delay. Each scenario is run for a simulation time of one 

hour, with a warm-up period of ten minutes that is excluded from the analysis of the results. To 

ensure a more accurate evaluation of performance, the metrics for each scenario are averaged 

over fifty runs with different seeds. In addition, the random seeds are kept consistent across 

scenarios to guarantee a fair comparison. The DQN-TSP agent’s performance is evaluated using 

peak and off-peak agents, respectively, for peak and off-peak traffic demands. 

4.4.1.1. Performance Evaluation 

The performance of six basic scenarios with different signal control strategies is 

evaluated and compared, with the performance of PSC serving as the baseline. In these 

scenarios, each bus is set to have a passenger occupancy of 30 passengers, while the number of 

passengers in each car is set to 1. The average bus arrival headway is set to five minutes. A 

detailed comparison of these six basic scenarios is shown in Table 4-4. 
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Table 4-4 Comparison of Average Delay for Basic Scenarios at Isolated Intersection Considering TSP 

Demand Type PSC ASC ATSP-T ATSP GA-TSP DQN-TSP 

Peak Average Bus Delay (s) 41.43 38.67 18.61 16.94 30.75 19.43 
 Delay Change  -6.66% -55.08% -59.11% -25.78% -53.10% 
 Average Car Delay (s) 40.19 35.48 38.02 36.14 36.27 35.24 
 Delay Change  -11.72% -5.40% -10.08% -9.75% -12.32% 
 Average Person Delay (s) 40.38 35.97 35.96 33.18 35.68 32.80 
 Delay Change  -10.92% -10.93% -17.83% -11.63% -18.77% 

Off-peak Average Bus Delay (s) 28.52 27.80 13.73 12.37 22.13 13.10 
 Delay Change  -2.52% -51.86% -56.63% -22.41% -54.07% 
 Average Car Delay (s) 27.31 25.49 26.00 25.27 27.94 23.32 
 Delay Change  -6.66% -4.80% -7.47% 2.31% -14.61% 
 Average Person Delay (s) 27.57 25.99 24.16 22.50 27.07 21.13 
 Delay Change   -5.73% -12.38% -18.39% -1.82% -23.36% 
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The DQN-TSP has the best performance in terms of average person delay under both 

peak and off-peak traffic demand conditions. Compared to the baseline, the proposed DQN-TSP 

controller reduces average person delay by 18.77% and 23.36% in peak and off-peak conditions, 

respectively. The larger reduction in the off-peak condition suggests that there may be more 

room for improvement in traffic efficiency under lower traffic demand conditions. The ATSP has 

the lowest average bus delay in both peak and off-peak conditions, reducing by 59.11% and 

56.63% respectively compared to the baseline. However, in the peak condition, the average car 

delay of ATSP is 36.14 seconds, slightly higher compared to both ASC and DQN-TSP 

controllers. It is due to the unconditional priority given to buses in ATSP. Yet, during off-peak, 

ATSP’s average car delay of 25.27 seconds is slightly lower than ASC’s, implying that granting 

priority to buses has a less negative impact on other traffic in low-traffic demand conditions. In 

addition, the comparison of the two actuated control strategies with TSP indicates that the CV 

technology offers a better performance than just using traditional fixed detectors to sense bus 

arrivals. As for the TSP-GA scenario, the average bus delay decreases by 25.78% and the 

average car delay decreased by 9.75% during the peak hour. The average bus delay is reduced by 

22.41% and the average car delay increases by 2.31% during the off-peak hour. These results 

indicate that the GA optimizer with TSP performs better in peak hours than in off-peak hours. 

The detailed impacts of the six basic control strategies on average vehicle delays in each 

traffic movement direction are shown in Figure 4-5. Right-turn movements are not presented as 

signal control strategies have little impact on these directions. In peak traffic demand, PSC and 

ASC provide balanced services in all directions. Meanwhile, those TSP controllers need to grant 

priority to buses, resulting in longer waiting times for vehicles in conflicting movements, such as 

southbound and northbound left turns. Such adverse impacts are mitigated during off-peak, 

which makes sense. However, compared to ATPS-T and ATSP, DQN-TSP can provide more 

balanced services to vehicles in conflicting directions. For example, in the ATSP scenario, the 

average vehicle delay in southbound and northbound left turns is 56.01 and 76.56 seconds, 

respectively. Meanwhile, in the DQN-TSP scenario, the average vehicle delay in both directions 

is about 64 seconds. In the off-peak traffic demand condition, all three scenarios, except for PSC 

and GA-TSP, maintain similar performance in all directions as there is no need to sacrifice other 

directions to prioritize buses. The unbalanced performance in PSC and GA-TSP during off-peak 

is due to an imbalance in traffic volume, with westbound left-turn having 2.6 times the volume of 

eastbound left-turn, but they still share the same phase. Compared to PSC, during the peak hour, 

average vehicle delays of GA-TSP are reduced by 12-25% in almost all left turn directions, 

except for a 19.62% increase in the northbound left turn. This is understandable, as the traffic 

demand for northbound left turn is more than twice that of southbound left turn. Regarding the 

through traffic, the average vehicle delay is reduced by 19.39% and 13.53% in southbound and 

northbound, respectively. During the off-peak hour, average vehicle delays for GA-TSP decrease 

in southbound through, westbound left, and northbound through. The average vehicle delays of 

other travel directions increased by ranging from about 7% to 13%. 
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These results indicate that GA-TSP and DQN-TSP have the potential to provide 

conditional priority to buses while minimizing the negative impact on conflicting traffics. 

However, the DQN controller outperforms the GA controller in all metrics. 

 
Note: SB=Southbound, WB=Westbound, NB=Northbound, EB=Eastbound, T=Through, L=Left turn. 

Figure 4-5 Average Vehicle Delay in Each Direction of Basic Scenario Considering TSP 
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4.4.1.2. Sensitivity Analysis 

• CV Market Penetration Rate 

In the basic scenario, we assume that both cars and buses are CVs, so all the real-time 

traffic information of vehicles is available. However, as CV technology is still in its early stages 

of development, it will take many years for a fully CV environment to become a reality. 

Furthermore, due to privacy concerns, 100% market penetration of CVs may never be reached. 

Thus, it is crucial to investigate the impact of the CV market penetration rate on the performance 

of the proposed controllers. Ten scenarios have been designed, covering both peak and off-peak 

traffic demand conditions, with MPR ranging from 20% to 100% in increments of 20%. Other 

settings are the same as in the basic scenarios.  

The results shown in Figure 4-6 illustrate that, with the increase in MPR, the performance 

of the proposed controllers improves across all metrics and scenarios. During the peak hour, the 

average bus delay is lower than the baseline, even with the MPR being as low as 20%. In off-

peak hours, the DQN-TSP controlled average bus delay is lower than the baseline at an MPR of 

40%, whereas the GA-TSP controlled average bus delay outperforms the baseline at an MPR of 

20%. This suggests that DQN-TSP requires a certain threshold of information to ensure 

satisfactory performance, while the performance of GA-TSP is more robust than DQN-TSP in 

low MPR environments. These results are consistent with findings from the broader field of RL 

research, indicating the partially observable issue is a research topic worthy of attention. When 

controlled by DQN-TSP, during peak hours, the average person delay is lower than the baseline 

when the MPR exceeds 60%. Furthermore, even with an MPR as low as nearly 40% in off-peak 

hours, the performance in terms of average person delay is better than the baseline. These results 

suggest that the proposed DQN controller also has a certain level of robustness even when only 

partial traffic information is available.  
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Figure 4-6 Sensitivity of Controllers to CV Market Penetration Rate at Isolated 

Intersection 

• Bus Passenger Occupancy 

We all know in the real world, the passenger occupancy of buses, which can be easily 

obtained through CV technology, varies from bus to bus. To study the sensitivity of the proposed 

controllers to changes in bus occupancy, we conducted experiments where the bus occupancy is 

varied while all other settings remain the same as in the basic scenarios. In this sensitivity 

analysis, the number of passengers on each bus is different in each scenario, including 1 

passenger per bus, 10 passengers per bus, 30 passengers per bus, 50 passengers per bus, and 70 

passengers per bus. The results shown in Figure 4-7 indicate that, as the bus occupancy 

increases, both the average bus delay and average person delay decrease during both peak and 
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off-peak hours. At the same time, the average car delay experiences a slight increase. 

Additionally, even as bus occupancy continues to increase, the increase in average car delays 

does not accelerate, while the decline in average bus delays becomes more moderate. In addition, 

compared to DQN-TSP, the GA-TSP controllers exhibit lower sensitivity. When the bus 

occupancy is greater than 10 passengers per vehicle, the average bus delays for GA-TSP largely 

remain constant, especially during peak hours. These findings underscore the superior capability 

of the proposed DQN-TSP controllers in handling fluctuations in bus occupancy, a crucial 

feature that enhances their suitability for real-world application. 

 

Figure 4-7 Sensitivity of Controllers to Bus Occupancy at Isolated Intersection 

• Bus Arrival Headway 
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In this part, the impact of bus arrival headway on the effectiveness of the proposed 

controllers is explored by considering five different headways, including 2 minutes, 5 minutes, 

10 minutes, 15 minutes, and 30 minutes, under two different traffic demand conditions. The rest 

of the scenario settings are in line with the basic scenarios. As illustrated in Figure 4-8, an 

increase in bus arrival headway results in a decrease in the average car delay and an increase in 

the average person delay. Meanwhile, the average bus delay also decreases a little. This aligns 

with expectations, as with the increase in headway, fewer buses are traveling on the road, 

allowing the traffic signal to give more consideration to the cars. As the headway increases, the 

gap between the average person delay and average car delay becomes closer. However, the 

impact of changes in bus arrival headway on traffic performance is not significant. 

 

Figure 4-8 Sensitivity of Controllers to Bus Arrival Headway at Isolated Intersection 
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4.4.2. Robustness Evaluation 

In this section, we focus on evaluating the robustness performance of DRL-based signal 

controllers in mixed traffic environments without considering TSP. We have developed four 

DRL-based controllers, i.e., DDQNSC, PPOSC, PPOSC-M, and PPOSC-M-C. Their settings are 

detailed in previous sections. 

4.4.2.1. Comparison of Basic Scenarios 

Firstly, we compare traffic performance in basic scenarios in terms of average vehicle 

delay. All settings remain the same except for differences in traffic demand and control 

strategies. The performance of PSC is used as the baseline for comparison. As shown Table 4-5, 

all four DRL-based controllers outperform these two traditional controllers under both peak and 

off-peak conditions in terms of the average delay. PPO-based controllers perform slightly better 

than DDQNSC. PPOSC-M shows the best performance in the peak scenario, with a 24.29% 

reduction in average delay compared to the baseline. PPOSC-M-C has the best performance in 

the off-peak scenario, with a 27.24% reduction of average delay compared to the baseline. The 

standard deviations of the average delay among 50 simulation runs demonstrate that PPOSC-M 

has the most stable performance in the off-peak scenario. In peak scenarios, PSC provides the 

most stable service while PPO-based controllers show almost the same level of stable 

performance. These results indicate that PPO-based controllers, especially PPOSC-M and 

PPOSC-M-C, can provide better service while ensuring good stability. 

Table 4-5 Performance Comparison of Basic Scenarios without TSP 

Type 
Peak 

PSC ASC DDQNSC PPOSC PPOSC-M PPOSC-M-C 

Average Delay (s) 39.90 34.58 33.47 31.90 30.21 30.37 

SD 0.80 0.95 1.38 0.97 1.06 0.99 

Delay Change  -13.34% -16.12% -20.06% -24.29% -23.89% 

Type 
Off-peak 

PSC ASC DDQNSC PPOSC PPOSC-M PPOSC-M-C 

Average Delay (s) 27.35 25.21 22.24 22.49 19.97 19.90 

SD 0.65 0.73 0.79 0.63 0.56 0.61 

Delay Change  -7.84% -18.69% -17.77% -27.00% -27.24% 

As presented in Table 4-1, the traffic volumes in the real world are unbalanced, such as 

the northbound left-turn volume being more than 2 times higher than the southbound left-turn 

volume during the peak hour. To evaluate the effectiveness of traffic signal controllers in a more 

comprehensive manner, it is necessary to investigate vehicle delays in different turning 

movements. Figure 4-9 illustrates the average delay of each turning movement under basic 

scenarios for each controller. Right-turn Delays are excluded from the comparison as they have 

little to do with the controller’s behavior. In general, left-turning vehicles experience longer 
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delays compared to those traveling through. In terms of service balance across all directions, the 

traditional controllers, PSC and ASC, outperform the DRL-based controllers. In peak scenarios, 

DDQNSC exhibits the least balanced service, with a maximum delay difference of 42.33 seconds 

between the northbound left-turn (71.73 s) and the westbound through (29.40 s). Similarly, in 

off-peak scenarios, DDQNSC also provides the least balanced service, with a maximum delay 

difference of 29.91 seconds between the southbound left-turn (45.07 s) and the northbound 

through (15.16 s). However, PPO-based controllers, especially those using multi-discrete action 

space, namely PPOSC-M and PPOSC-M-C, can provide nearly the same level of balancing 

services as traditional controllers. 

Based on these comparisons, PPO-based controllers using multi-discrete action space 

have the most favorable performance. They not only demonstrate the most effective performance 

in terms of overall average delay but also exhibit a good balance in serving vehicles traveling in 

different directions. 

 

Note: SB=Southbound, WB=Westbound, NB=Northbound, EB=Eastbound, T=Through, L=Left turn. 

Figure 4-9 Average Delays in Each Turning Movement of Basic Scenarios without TSP 
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4.4.2.2. Comparison of Mixed Traffic Scenarios 

The DRL-based controllers heavily rely on traffic information obtained from CV 

technologies. However, achieving a pure CV environment may take a long time or may never be 

able to realize. It is more realistic to consider a mixed traffic environment where both CVs and 

NCVs travel on the road. Thus, it is crucial to evaluate the impact of CV’s MPR on the 

performance of DRL-based controllers, as a controller that remains robust in mixed traffic 

environments would be more desirable. The statistical comparison of these DRL-based 

controllers, which are training in scenarios where the MPRs of CV are 100%, is depicted in 

Figure 4-10 and Figure 4-11.  

 

Figure 4-10 Delay Statistics under Different MPRs in Peak Scenarios at Isolated 

Intersection 
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Figure 4-11 Delay Statistics under Different MPRs in Off-peak Scenarios at Isolated 

Intersection 

In general, PPO-based controllers utilizing the multi-discrete action space have more 

robust performance regardless of the variation of MPR. This demonstrates that the 

implementation of the multi-discrete action space in PPO-based controllers is well suited for 

adoption in the field of TSC, especially in mixed traffic environments. This advantage may be 

due to the reduced frequency of decision-making, which leads to a significantly decreased 

sensitivity to the information obtained. 

In addition, PPOSC-M-C outperforms PPOSC-M in terms of robustness. PPOSC-M-C 

can provide better services to NCVs while providing the same level of services to CVs compared 

to PPOSC-M, especially in low MPR scenarios. For example, in the peak demand with a 20% 

MPR scenario, the NCVs’ average delay (36.92 s) is only 2.96 seconds greater than CVs’ 

average delay (33.96 s) when controlled by PPOSC-M-C. In contrast, the average delay gap is 
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9.62 seconds between NCVs (44.86 s) and CVs (35.24 s) when controlled by PPOSC-M. This 

difference is even more obvious in the off-peak demand with a 20% MPR scenario, where the 

delay difference between NCVs and CVs is 3.22 seconds with PPOSC-M-C and 15.33 seconds 

with PPOSC-M. Besides, when using PPOSC-M-C, even in scenarios with as low as 20% MPR, 

the average delays of both CVs and NCVs are less than the baseline, represented by the average 

delays in scenarios controlled by the pretimed controller (39.90 s in the peak scenario and 27.35 

s in the off-peak scenario). These results demonstrate that the implementation of the combined 

state space significantly enhances robustness in mixed traffic environments. 

The comparison exhibits a notable deterioration in the performance of PPOSC in 

scenarios of 20% MPR, even compared to DDQNSC. However, in other scenarios, PPOSC and 

DDQNSC show similar levels of performance. This phenomenon suggests that PPO is more 

sensitive to the information it can observe compared to DDQN. Nevertheless, this issue can be 

effectively addressed by implementing the multi-discrete action space and the combined state 

space. This enhancement is likely due to the utilization of a broader set of actions and states, 

leading to improved adaptability across different scenarios, including those with sparse 

information availability. The results also indicate that, while all vehicles will experience reduced 

waiting times compared to traditional controllers, NCVs are expected to have longer average 

waiting times than CVs. This fact can be interpreted in a positive way, as suggested by Zhang et 

al. (2021), where this difference can incentivize people to equip their vehicles with connected 

functions and be more willing to share real-time vehicle information. 
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Chapter 5. Corridor 

This chapter focuses on the experimental settings and results analysis in corridor 

scenarios. 

5.1. Traffic Configuration 

Two corridor scenarios are constructed to evaluate the performance of MARL-based 

signal controllers: a hypothetical scenario and a real-world scenario.  

The hypothetical corridor consists of five identical intersections along the east-westbound 

direction, as shown in Figure 5-1. The distance between intersections is 500 meters. Each 

intersection is a four-leg intersection, with approaching roads having three lanes: one right-turn 

lane, one left-turn lane, and one through lane, as shown in Figure 5-2. The speed limit is 45 mph, 

which is 20 m/s. Buses travel in both the eastbound and westbound directions. Bus stops are 

positioned downstream of the intersections. The bus arrival headway is set at 5 minutes, which is 

implemented in the simulation by the time interval between buses entering the road network.  

 

Figure 5-1 The Layout of the Hypothetical Corridor 

 

Figure 5-2 The Layout of the Hypothetical Intersection 
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The real-world corridor is modeled after the Central Avenue corridor located east of 

downtown Charlotte, North Carolina, USA. Five consecutive intersections have been selected 

and are listed from west to east: Central Avenue & Eastcrest Drive, Central Avenue & Briar 

Creek, Central Avenue & Eastway Drive, Central Avenue & Kilborne Drive, and Central 

Avenue & Rosehaven Drive. The corridor layout is illustrated in Figure 5-3. The distances 

between these intersections vary, ranging from 400 meters to 875 meters. The intersection 

layouts are further detailed in Figure 5-4. Among them, Intersection 1 is a T-shaped intersection, 

while the other intersections are four-leg intersections with varying numbers of approaching 

lanes and different channelization schemes. Otherwise, all other traffic settings remain consistent 

with those in the hypothetical corridor scenario. 

 

Figure 5-3 The Layout of the Real-World Corridor Scenario 



 

 

47 

 

 

Figure 5-4 Layouts of the Intersections in the Real-World Corridor Scenario 

5.2. Simulation Settings 

We investigate two levels of traffic demand, namely high demand and low demand. In 

the hypothetical scenario, under high demand conditions, the traffic flow entering each boundary 

road is set at 850 veh/h, resulting in a total traffic volume of 10,200 veh/h along the corridor. In 

low demand conditions, 400 vehicles are inserted into each boundary road per hour, resulting in 

a total traffic demand of 4800 veh/h. Within the intersections, each approach road has the same 

turn ratio: a left-turning ratio of 10%, a through ratio of 75%, and a right-turning ratio of 15%.  

For the real-world scenario, the peak hour volumes (representing high demand) and off-

peak hour volumes (representing low demand) at the test corridor are utilized. The peak hour is 

from 5 to 6 PM on Wednesday, April 21, 2021, while the off-peak hour is from 9 to 10 AM on 

the same day. Traffic volume data is obtained from the Charlotte Department of Transportation 

(CDOT) and is presented Table 5-1. The traffic flows generated in the simulation follow a 

Poisson distribution. Each simulation run lasts one hour, with a ten-minute warm-up period. 

Table 5-1 Traffic Volume Data in the Real-world Scenario, veh/h 

Int. Demand 
SB WB NB EB 

R T L R T L R T L R T L 

1 
PM Peak - - - - 583 3 62 - 29 50 984 - 

Off-peak - - - - 495 3 28 - 21 17 354 - 

2 PM Peak 12 10 8 11 564 166 251 5 140 179 908 2 
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Off-peak 3 6 6 1 421 158 68 9 92 107 324 2 

3 
PM Peak 176 793 88 68 341 206 325 883 180 193 547 246 

Off-peak 152 707 36 40 319 235 122 541 138 128 197 91 

4 
PM Peak 77 52 246 193 466 66 105 101 23 10 808 123 

Off-peak 79 42 128 116 486 41 24 39 8 12 298 51 

5 
PM Peak 41 10 50 23 676 101 38 27 66 69 1011 76 

Off-peak 44 9 27 21 560 73 23 16 41 22 416 26 

Note: SB=southbound; WB=westbound; NB=northbound; EB=eastbound; R=right turn; T=Through, L=Left turn. 

To comprehensively evaluate the effectiveness of the proposed MARL-based signal 

controllers, we have developed nine traffic signal controllers employing various signal control 

strategies. Specific settings for each controller are detailed below. 

• Pretimed Signal Controller (PSC): The intersections are controlled by pretimed signal 

controllers utilizing the stage-based phase program, as shown in Figure 4-2(b). The signal 

timings are calculated using the Webster method (Koonce, 2008), based on the 

corresponding traffic volumes.  

• Actuated Signal Controller (ASC): The intersections are controlled by fully actuated 

signal controllers, employing a typical National Electrical Manufacturers Association 

(NEMA) phase diagram. The phase sequence is shown in Figure 4-2(a).  

• Actuated Signal Controller with TSP Using CV (ATSP): The intersections are controlled 

by fully actuated signal controllers, identical to ASC. However, a TSP strategy is activated 

when a bus approaches within 100 meters of the intersection. The TSP strategy implemented 

is an unconditional, active, rule-based strategy. Specifically, the traffic signal will switch to 

the appropriate phase upon activation to favor the buses progress. The buses are CVs and 

cars are HDVs. 

The above three controllers represent conventional traffic signal controllers widely used 

in real-world practice. Their performance serves as baselines for real-world implementations. 

• Max Pressure Controller (MP): This controller utilizes the Max Pressure strategy to 

control the SPaT at each intersection. Proposed by Varaiya (2013), this strategy introduces 

“pressure” as a metric to assess the traffic state at intersections. At each decision step, the 

phase with the maximum “pressure” will be chosen. Originally, “pressure” was defined as 

the product of link capacity and the difference in queue length between the input and the 

output links. Various formulations exist for pressure calculation. In this study, we employ 

the method proposed in Wei et al. (2019).  

• Max Pressure Controller with TSP (MP-TSP): The SPaT at each intersection is 

controlled by the MP controller. However, this controller slightly modifies the pressure 

calculation by adding weights to buses. In this way, bus delays can be reduced. 
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• Longest Queue First Controller (LQF): Utilizing the Longest Queue First strategy 

introduced by Wunderlich et al. (2008), this controller regulates signals at each intersection 

with a straightforward control logic. At each decision step, the current queue length for each 

phase is obtained, and then the phase with the longest queue length is selected.  

• Longest Queue First Controller with TSP (LQF-TSP): Similar to MP-TSP, this controller 

modifies the queue length calculation by adding weights to buses. 

The above four controllers employ decentralized control strategies, and their decision-

making processes have low computational cost, and therefore are easily scalable. 

• Multi-agent PPO (MAPPO): This controller adopts the MARL framework to manage the 

SPaT at intersections. The control algorithm is PPO with necessary modifications to be 

compatible with multi-agent systems. Configurations pertaining to the global state, local 

observation, action space, and reward function are detailed in section 3.2. 

• Multi-agent PPO with Multi-discrete action (MAPPO-M): MAPPO-M utilizes the multi-

discrete action space. Aside from this modification, it shares the same configurations as 

MAPPO. 

5.3. Training 

Eight MARL controllers are trained, incorporating variations in controller configurations 

(MAPPO and MAPPO-M), corridor layouts (hypothetical corridor and real-world corridor), and 

traffic demands (high demand and low demand). Critical Python libraries used to implement 

these controllers include TracI, Gymnasium, PettingZoo, Pytorch, and RLlib. The Adam 

(adaptive moment estimation) optimizer is employed in the training process. The 

hyperparameters for both MAPPO and MAPPO-M have been well-tuned, and their values are 

presented in Table 5-2. All the MARL controllers are trained on a machine with Intel Core i7-

11700 CPU, 32 GB of RAM, NVIDIA GeForce RTX 3080, and the Ubuntu 22.04.3 LTS 

operating system. 

Table 5-2 Hyperparameters Used for MAPPO and MAPPO-M 

Hyperparameter 
Hypothetical 

Scenario 
Real-world Scenario 

Training episode 1000 1000 

Discount factor 0.9 0.85 

Learning rate 0.001 - 0.0003 0.001 - 0.0005 

Train batch size 2048 2048 

Batch size 256 256 

Number of SGD iteration 3 3 

Value function loss coefficient 0.5 0.5 



 

 

50 

 

Clip range 0.2 0.2 

Entropy coefficient 0.01-0.001 0.01-0.001 

Max gradient update 0.5 0.5 

Their training performance for two types of corridors under both high and low traffic 

demand with 100% MPR is depicted in Figure 5-5 and Figure 5-6. MAPPO exhibits faster 

convergence and more stable performance compared to MAPPO-M, particularly under high-

demand conditions. The utilization of the multi-discrete action space might make the training 

process more challenging in multi-agent systems, which differs from the phenomenon observed 

in single-agent systems in the previous chapter. 

 

Figure 5-5 Mean Episode Reward Curves for MARL-based controllers under Peak and 

Off-peak Conditions in the Hypothetical Scenario 
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Figure 5-6 Mean Episode Reward Curves for MARL-based Controllers under Peak and 

Off-peak Conditions in the Real-world Scenario 

5.4. Result Analyses 

5.4.1. Performance Evaluation 

We employ four metrics to comprehensively evaluate the performance of the controllers 

in corridor scenarios, with the performance of PSC serving as the baseline.  

• Average travel time (ATT): The average travel time for all assessed targets from entering 

the road network to exiting the road network. 

• Average delay (AD): The average delays for all assessed targets travel in the road network. 

• Average speed (AS): The average speed for all assessed targets in the road network. 
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• Average number of stops (ANS): The average number of stops for all assessed targets in 

the road network, excluding scheduled stops such as bus stops at the bus station. 

A detailed performance comparison of the nine controllers in hypothetical corridor 

scenarios is presented in Table 5-3 and Table 5-4, while Table 5-5 and Table 5-6 display the 

results in real-world corridor scenarios. 

5.4.1.1. Performance of Buses 

First, the performance metrics of buses are examined. MAPPO-M demonstrates the best 

performance in terms of ATT, AD, AP, and ANS in almost all scenarios, regardless of testbeds 

and traffic demand conditions. 

In the hypothetical corridor scenarios, when compared with the baseline, MAPPO-M 

reduces ATT, AD, and ANS by 52.17%, 78.26%, and 65.86%, respectively, under the high-

demand condition. In low-demand conditions, it reduces ATT, AD, and ANS by 12.38%, 

36.04%, and 49.75%, respectively. Additionally, the AS of buses increased by 108.77% and 

13.26% under high and low demand conditions, respectively.  

In the real-world corridor scenarios, compared to the baseline, MAPPO-M reduces ATT, 

AD, and ANS by 21.78%, 51.67%, and 62.18%, respectively, during peak hours. In addition, AS 

increased by 26.83%. During off-peak hours, compared with the baseline, ATT and AD 

decreased by 21.37% and 52.35%, respectively, while AP increased by 26.85%. When controlled 

by MAPPO-M, the ANS during off-peak hours is 1.57, slightly higher than ATSP but still better 

than the baseline with a reduction of 66.55%. Additionally, MAPPO also significantly improves 

the performance of buses in terms of mobility regardless of the testbeds and traffic demands, 

although its performance is slightly worse than MAPPO-M.  

5.4.1.2. Performance of Cars 

Regarding the performance of cars, fully actuated controllers exhibit superior 

performance.  

In hypothetical scenarios, under high demand, ASC reduces ATT and AD by 13.29% and 

24.19%, respectively. In low demand scenarios, ATSP performs the best, achieving reductions of 

8.63% in ATT and 22.44% in AD. MP demonstrates the best performance in AS, with increases 

of 6.05% in high-demand and 5.89% in low-demand. MP also achieves the least ANS in the low-

demand condition, which is 0.92, while PSC has the least ANS in the high demand condition, 

with a value of 1.04.  

In real-world scenarios, fully actuated controllers, ASC and ATSP, continue to show the 

best performance in terms of ATT, AD, and AS. During peak hours, ASC reduces ATT and AD 
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by 6.36% and 15.39%, respectively, and increases AS by 5.78% compared to the baseline. 

During off-peak hours, ATSP achieves reductions of 5.18% in ATT and 15.20% in AD, with an 

increase in AS by 4.78%. However, MAPPO-M outperforms other controllers in terms of ANS 

in both peak and off-peak conditions.  

In terms of car performance, ASC performs the best in high-demand scenarios, while 

ATSP excels in low-demand scenarios. This is because in low-demand conditions, prioritizing 

buses has a less negative impact on other traffic. Additionally, MARL-based controllers, 

MAPPO and MAPPO-M, provide almost the same level of services to cars, which is desirable.  

5.4.1.3. Performance of Person  

In the hypothetical corridor scenarios under high-demand conditions, MAPPO-M 

outperforms other controllers in terms of ATT and AD, reducing ATT by 22.15% and AD by 

38.92% compared to the baseline. It also ranks second in terms of AS and ANS among all 

controllers. Under low-demand conditions, ATSP has the best performance in terms of ATT, AD, 

and AS. Compared to the baseline, it reduces the ATT and AD by 7.72% and 20.89% 

respectively, while increasing AS by 5.28%. MAPPO-M has the least ANS, with a value of 0.98. 

MAPPO shows a similar level of capability to MAPPO-M, though with a slightly worse 

performance.  

In real-world corridor scenarios, ATSP outperforms other controllers in terms of ATT, 

AD, and AS, while MAPPO-M has the best performance in terms of ANS. However, MARL-

based controllers perform nearly as well as ATSP. 

Overall, MAPPO-M and MAPPO demonstrate the best performance in terms of bus 

metrics, while ASC and ATSP excel in car metrics. Regarding metrics related to the average 

person, ATSP demonstrates superior performance, and MARL-based controllers also perform 

well. It is worth noting that MARL-based controllers can prioritize buses based on passenger 

occupancy, a capability lacking in conventional TSP controllers. Additionally, MARL-based 

controllers perform better in hypothetical scenarios than in real-world scenarios, possibly due to 

these problems having very different complexities. In hypothetical scenarios, traffic 

configurations remain identical across intersections, whereas in real-world scenarios, they vary 

significantly. 
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Table 5-3 Performance Comparison of Different Controllers in Hypothetical Corridor Scenarios under High Demand  

Peak 
Bus Car Person 

ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 749.43 499.56 4.00 5.58 151.12 83.91 10.85 1.04 195.39 114.66 10.34 1.38 

Change rates - - - - - - - - - - - - 

ASC 599.32 349.45 5.11 5.80 131.03 63.61 11.37 1.20 165.95 84.93 10.90 1.54 

Change rates -20.03% -30.05% 27.77% 3.91% -13.29% -24.19% 4.77% 14.87% -15.06% -25.93% 5.39% 11.79% 

ATSP 393.18 143.31 7.63 3.27 140.23 72.76 10.62 1.40 160.42 78.39 10.38 1.55 

Change rates -47.54% -71.31% 90.67% -41.43% -7.21% -13.29% -2.08% 34.12% -17.90% -31.63% 0.40% 12.29% 

MP 568.37 318.49 5.33 6.28 146.83 79.59 11.50 1.31 178.69 97.65 11.04 1.69 

Change rates -24.16% -36.25% 33.12% 12.63% -2.84% -5.14% 6.05% 25.95% -8.55% -14.84% 6.73% 22.53% 

MP-TSP 402.52 152.64 7.47 3.45 151.03 83.75 10.75 1.34 171.19 89.28 10.49 1.51 

Change rates -46.29% -69.44% 86.80% -38.22% -0.06% -0.18% -0.90% 28.58% -12.38% -22.14% 1.41% 9.52% 

LQF 553.91 304.03 5.49 6.02 150.98 83.72 10.47 1.51 181.41 100.35 10.09 1.85 

Change rates -26.09% -39.14% 37.20% 7.98% -0.10% -0.22% -3.47% 45.03% -7.15% -12.47% -2.38% 34.44% 

LQF-TSP 500.51 250.64 6.06 5.61 152.86 85.59 10.26 1.51 179.67 98.31 9.93 1.83 

Change rates -33.21% -49.83% 51.43% 0.59% 1.15% 2.01% -5.45% 45.02% -8.04% -14.25% -3.95% 32.63% 

MAPPO 359.20 109.31 8.34 1.98 138.11 70.55 10.54 1.46 155.74 73.64 10.37 1.50 

Change rates -52.07% -78.12% 108.33% -64.44% -8.61% -15.92% -2.82% 39.62% -20.29% -35.77% 0.24% 8.69% 

MAPPO-M 358.46 108.59 8.35 1.90 134.21 66.69 10.97 1.34 152.10 70.04 10.76 1.39 

Change rates -52.17% -78.26% 108.77% -65.86% -11.19% -20.51% 1.10% 28.69% -22.15% -38.92% 4.04% 0.62% 

Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-4 Performance Comparison of Different Controllers in Hypothetical Corridor Scenarios under Low Demand 

Off-peak 
Bus Car Person 

ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 380.52 130.66 7.92 2.02 110.92 43.24 13.26 1.18 152.76 56.81 12.43 1.31 

Change rates - - - - - - - - - - - - 

ASC 419.93 170.04 7.17 4.14 101.43 33.62 13.98 1.02 150.72 54.74 12.92 1.50 

Change rates 10.36% 30.14% -9.47% 105.36% -8.56% -22.24% 5.38% -13.99% -1.33% -3.64% 3.94% 14.39% 

ATSP 356.99 107.12 8.38 1.81 101.35 33.54 13.95 1.04 140.97 44.94 13.09 1.16 

Change rates -6.18% -18.02% 5.85% -10.45% -8.63% -22.44% 5.20% -12.16% -7.72% -20.89% 5.28% -11.76% 

MP 420.62 170.73 7.16 3.96 107.59 39.83 14.04 0.92 156.03 60.09 12.98 1.39 

Change rates 10.54% 30.67% -9.56% 96.14% -3.00% -7.88% 5.89% -22.46% 2.14% 5.78% 4.39% 5.73% 

MP-TSP 346.29 96.41 8.64 1.82 108.21 40.44 13.85 0.93 145.16 49.13 13.04 1.06 

Change rates -9.00% -26.21% 9.16% -9.67% -2.44% -6.46% 4.44% -21.77% -4.98% -13.51% 4.91% -18.88% 

LQF 426.94 177.07 7.05 4.11 109.84 42.08 13.20 1.17 158.96 62.99 12.25 1.62 

Change rates 12.20% 35.52% -10.92% 103.75% -0.97% -2.68% -0.45% -1.15% 4.06% 10.88% -1.47% 23.81% 

LQF-TSP 409.14 159.27 7.34 4.09 110.19 42.43 13.15 1.17 156.56 60.55 12.25 1.62 

Change rates 7.52% 21.90% -7.33% 102.73% -0.66% -1.87% -0.82% -1.27% 2.49% 6.60% -1.46% 23.52% 

MAPPO 345.54 95.68 8.66 1.62 108.14 40.37 13.48 0.94 145.00 48.95 12.74 1.05 

Change rates -9.19% -26.77% 9.42% -19.79% -2.50% -6.64% 1.67% -20.37% -5.08% -13.82% 2.44% -20.22% 

MAPPO-M 333.68 83.81 8.96 1.08 107.86 40.05 13.41 0.96 142.87 46.84 12.72 0.98 

Change rates -12.31% -35.85% 13.19% -46.53% -2.76% -7.36% 1.14% -18.61% -6.47% -17.55% 2.33% -25.27% 

Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-5 Performance Comparison of Different Controllers in Real-world Corridor Scenarios under High Demand 

Peak 
Bus Car Person 

ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 502.94 212.04 7.65 4.22 164.44 69.08 11.97 1.60 203.65 85.64 11.47 1.90 

Change rates - - - - - - - - - - - - 

ASC 485.92 195.02 7.90 4.05 153.98 58.45 12.66 1.50 192.29 74.20 12.11 1.79 

Change rates -3.39% -8.03% 3.26% -4.13% -6.36% -15.39% 5.78% -6.20% -5.58% -13.36% 5.60% -5.74% 

ATSP 408.93 118.01 9.33 2.09 154.46 58.91 12.57 1.53 184.65 65.92 12.19 1.60 

Change rates -18.69% -44.34% 21.98% -50.55% -6.07% -14.72% 5.01% -4.32% -9.33% -23.03% 6.24% -16.12% 

MP 480.57 189.68 7.99 4.19 178.76 83.16 11.59 1.62 213.96 95.58 11.17 1.92 

Change rates -4.45% -10.55% 4.36% -0.82% 8.71% 20.39% -3.18% 1.02% 5.06% 11.61% -2.62% 0.64% 

MP-TSP 417.96 127.06 9.15 2.38 199.84 104.26 10.57 1.65 225.90 106.98 10.40 1.74 

Change rates -16.90% -40.08% 19.58% -43.58% 21.53% 50.93% -11.68% 3.03% 10.92% 24.92% -9.30% -8.81% 

LQF 496.56 205.66 7.73 4.63 170.37 74.97 11.57 1.92 207.99 90.04 11.13 2.24 

Change rates -1.27% -3.01% 1.05% 9.70% 3.61% 8.53% -3.37% 20.22% 2.13% 5.14% -3.01% 17.43% 

LQF-TSP 474.56 183.65 8.07 4.61 177.28 81.86 11.08 1.97 212.09 93.78 10.73 2.28 

Change rates -5.64% -13.39% 5.42% 9.26% 7.81% 18.50% -7.44% 23.19% 4.14% 9.50% -6.48% 19.78% 

MAPPO 405.48 114.58 9.42 2.17 155.69 60.00 12.49 1.48 185.31 66.48 12.12 1.56 

Change rates -19.38% -45.96% 23.07% -48.67% -5.32% -13.14% 4.28% -7.75% -9.01% -22.38% 5.66% -18.17% 

MAPPO-M 393.38 102.48 9.70 1.60 158.59 62.86 12.31 1.45 186.44 67.56 12.00 1.47 

Change rates -21.78% -51.67% 26.83% -62.18% -3.56% -9.00% 2.81% -9.49% -8.45% -21.11% 4.60% -23.00% 

Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Table 5-6 Performance Comparison of Different Controllers in Real-world Corridor Scenarios under Low Demand 

Off-peak 
Bus Car Person 

ATT AD AS ANS ATT AD AS ANS ATT AD AS ANS 

PSC 491.49 200.58 7.78 4.68 140.28 48.59 13.27 1.45 196.62 72.98 12.39 1.97 

Change rates - - - - - - - - - - - - 

ASC 458.74 167.84 8.36 3.78 133.16 41.37 13.94 1.29 188.71 62.95 12.98 1.71 

Change rates -6.66% -16.32% 7.43% -19.18% -5.07% -14.86% 5.03% -11.04% -4.02% -13.74% 4.81% -12.85% 

ATSP 395.62 104.71 9.64 1.54 133.00 41.21 13.90 1.30 178.19 52.13 13.17 1.34 

Change rates -19.51% -47.80% 23.84% -67.21% -5.18% -15.20% 4.78% -10.04% -9.37% -28.56% 6.30% -31.73% 

MP 448.13 157.22 8.56 3.49 145.30 53.50 13.31 1.25 197.10 71.24 12.50 1.63 

Change rates -8.82% -21.62% 10.05% -25.49% 3.58% 10.09% 0.30% -13.96% 0.24% -2.38% 0.88% -17.14% 

MP-TSP 400.19 109.30 9.54 2.10 163.63 71.86 11.94 1.44 204.45 78.32 11.53 1.55 

Change rates -18.58% -45.51% 22.60% -55.24% 16.65% 47.88% -10.00% -0.58% 3.98% 7.33% -6.95% -21.04% 

LQF 465.31 174.39 8.23 4.17 142.39 50.68 13.09 1.53 197.23 71.69 12.26 1.98 

Change rates -5.33% -13.06% 5.74% -10.90% 1.51% 4.28% -1.35% 5.65% 0.31% -1.77% -1.00% 0.59% 

LQF-TSP 456.26 165.35 8.38 4.36 149.55 57.86 12.45 1.60 202.19 76.31 11.75 2.07 

Change rates -7.17% -17.56% 7.65% -6.92% 6.61% 19.07% -6.17% 10.22% 2.83% 4.57% -5.14% 5.26% 

MAPPO 391.11 100.21 9.75 1.83 139.00 47.18 13.35 1.27 182.39 56.30 12.73 1.36 

Change rates -20.42% -50.04% 25.35% -60.99% -0.91% -2.92% 0.62% -12.51% -7.24% -22.85% 2.78% -30.68% 

MAPPO-M 386.48 95.58 9.87 1.57 139.84 48.03 13.24 1.23 182.30 56.22 12.66 1.29 

Change rates -21.37% -52.35% 26.85% -66.55% -0.31% -1.15% -0.24% -14.87% -7.28% -22.96% 2.17% -34.39% 

Note: ATT represents average travel time (s); AD represents average delay (s); AS represents average speed (m/s); ANS represents average number of stops. 
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Figure 5-7 Average Delay Statistics in Different Controllers in Hypothetical Corridor 

Scenarios 
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Figure 5-8 Average Delay Statistics in Different Controllers in Real-world Corridor 

Scenarios 

Figure 5-7 and Figure 5-8 illustrate average delay statistics for different controllers in 

different scenarios. Generally, controllers without TSP exhibit greater variances in average bus 

delay compared to controllers with TSP. ATPS, MP-TSP, MAPPO, and MAPPO-M significantly 
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reduce the average bus delays, with MAPPO-M performs the best and demonstrating the smallest 

variance. In real-world scenarios, MP-TSP and LQF-TSP greatly increase average car delay. 

However, in hypothetical scenarios, their performance in terms of average car delay is not 

significantly compromised. This may suggest that these two controllers struggle to balance bus 

priority with car services under unbalanced traffic demand conditions. These figures further 

emphasize that MARL-based controllers provide stable services for buses.  

5.4.2. Sensitivity Analysis 

5.4.2.1. CV Market Penetration Rate 

In corridor scenarios, we also examine the impact of the CV market penetration rate on 

the performance of the proposed controllers. Ten scenarios, encompassing both peak and off-

peak hours, have been designed with the MPR ranging from 20% to 100%, in increments of 

20%. Other settings remain consistent with the basic scenarios. The results are shown in Figure 

5-9 and Figure 5-10. 

As the MRP increases, both MAPPO-M and MAPPO demonstrate improved performance 

in terms of average delays across all scenarios. This improvement becomes more pronounced 

when the MPR is lower than 60%. In hypothetical scenarios, the average person delay is lower 

than the baseline when the MRP reaches 60%, while in real-world scenarios, the average person 

delay is lower than the baseline when the MPR reaches 40%. The MAPPO controller trained in 

the hypothetical scenario with high traffic demand outperforms MAPPO-M in low MPR 

scenarios. However, MAPPO-M outperforms MAPPO in the other three scenarios when the 

MPR is low, providing more stable services for both buses and cars. This suggests that the 

introduction of multi-discrete action space can enhance the robustness of MARL-based 

controllers in mixed traffic environments, aligning with our findings in isolated intersection 

scenarios.  
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Figure 5-9 Sensitivity of Controllers to CV Market Penetration Rate in Hypothetical 

Corridor Scenarios 
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Figure 5-10 Sensitivity of Controllers to CV Market Penetration Rate in Real-world 

Corridor Scenarios 

5.4.2.2. Bus Passenger Occupancy 

In this section, we investigate the sensitivity to bus passenger occupancy by varying the 

number of passengers per bus across scenarios. All other settings remain the same as in the basic 

scenarios. Specifically, we set the number of passengers on each bus to 1, 10, 30, 50, and 70 

passengers.  

The results, as shown in Figure 5-11 and Figure 5-12, indicate that as bus passenger 

occupancy increases from 1 passenger per bus to 30 passengers per bus, the average bus delay 
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decreases significantly across all scenarios. When the passengers on the bus exceed 30, the 

MARL-based controllers become insensitive to it, especially during peak hours. The average car 

delay experiences a slight increase with more priority given to buses. However, these increases 

are minimal compared to the reduction in average bus delays, which suggests that the adverse 

impacts on the car are likely to be negligible, even with buses receiving more priority. Compared 

to MAPPO, except for the hypothetical scenario during peak hours with bus passenger 

occupancy less than 30, MAPPO-M provides better service for buses. 

 

Figure 5-11 Sensitivity of Controllers to Bus Passenger Occupancy in Hypothetical 

Corridor Scenarios 
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Figure 5-12 Sensitivity of Controllers to Bus Passenger Occupancy in Real-world Corridor 

Scenario 

5.4.2.3. Bus Arrival Headway 

This section explores the impact of bus arrival headways on the effectiveness of the 

proposed controllers by considering five different headways: 2 minutes, 5 minutes, 10 minutes, 

15 minutes, and 30 minutes. The rest of the scenario settings align with the basic scenarios.  



 

 

65 

 

As illustrated in Figure 5-13 and Figure 5-14, changes in bus arrival headway have 

insignificant impacts on the average bus delay, especially in scenarios controlled by MAPPO-M. 

As bus arrivals become less frequent, the average car delay decreases, as well as the average 

person delay. This occurs because a reduced frequency of bus arrivals results in less interruption 

to traffic, as fewer buses requiring priority. 

 

Figure 5-13 Sensitivity of Controllers to Bus Arrival Headway in Hypothetical Corridor 

Scenarios 
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Figure 5-14 Sensitivity of Controllers to Bus Arrival Headway in Real-world Corridor 

Scenario 
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Chapter 6. Conclusions 

This study begins with a comprehensive literature review about optimization algorithms 

in TSC and TSP, which reveals research gaps and provides the basis for our contribution. The 

following chapter outlines the methodology adopted in this study, including DRL algorithms and 

MARL algorithms. Detailed configurations of RL algorithms are also covered, including global 

state spaces, local observation spaces, action spaces, reward functions, and neural network 

structures. The core of our work is the development of adaptive TSP controllers utilizing DRL 

algorithms and leveraging real-time data obtained through CV technology. These controllers, 

proposed in this study, aim to overcome the limitations of existing conventional controllers as 

well as state-of-the-art controllers. The study can be divided into two parts: (1) isolated 

intersection-level DRL-based TSP control and (2) corridor-level MARL-based TSP control. At 

the isolated intersection level, we introduce the DQN-TSP controller, designed to prioritize 

transit vehicles while mitigating adverse effects on the whole traffic system. We also delve into 

the aspect of enhancing robustness in mixed traffic environments. This is achieved by leveraging 

multiple data sources and introducing innovative action spaces. Therefore, we proposed the 

PPOSC-M-C controller, which is built on PPO and utilizes traffic information from both CVs 

and cameras within the intersection. Besides, this controller adopts a novel action space, multi-

discrete action space, which is seldom used in the TSC research area, aiming to obtain better 

performance. At the corridor level, we introduced MARL-based controllers to manage individual 

intersections while ensuring coordination between them. Simultaneously, the proposed MARL-

based controllers prioritize bus progress. These controllers utilize the PPO algorithm with minor 

modifications. Specifically, it is adapted to be compatible with the framework of centralized 

training and decentralized execution, enhancing overall performance. Additionally, parameter 

sharing, which is an efficient training technique, is also implemented to achieve faster and more 

stable training processes. To comprehensively evaluate the proposed controllers, we built three 

simulation testbeds, i.e., the real-world isolated intersection testbed, the real-world corridor 

testbed, and the hypothetical corridor testbed. Subsequently, numerous experiments were 

conducted within the testbeds to explore various scenarios involving different traffic demands, 

signal control strategies, etc. Additionally, we delved into sensitivity analysis, focusing on 

critical factors such as CV market penetration rates, bus passenger occupancies, and bus arrival 

headways. 

For isolated intersection scenarios, results indicate that the proposed DQN controller 

outperforms the conventional controllers in terms of average person delay. Compared to the 

baseline, it reduces the average person delay by 18.77% and 23.37% in both peak and off-peak 

conditions, respectively. The proposed controller also leads to a decrease in both average bus and 

car delays. Although the fully actuated controller with TSP performs better in terms of the 

average bus delay, its performance is not balanced across all traffic movements. The sensitivity 

analysis demonstrates that the proposed controller can effectively adapt to changes in bus 
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occupancy and can still perform well even when the MPR is not 100%. Additionally, the 

controller’s performance remains stable regardless of the bus arrival headway. In summary, the 

proposed DQN controller prioritizes buses while still maintaining a desirable level of service for 

other traffic. By ensuring transit vehicles receive the appropriate priority, our approach 

contributes to a more balanced transportation system. Moreover, its adaptability in handling 

changes in MPR and bus occupancy makes it a promising controller for real-world 

implementation. This study demonstrates the effectiveness of the proposed controller through 

comparison with conventional traffic signal control strategies. It is worth noting that numerous 

sophisticated algorithms have emerged in recent years, and a limitation of this study is that we 

did not assess the effectiveness of the controller in comparison to these algorithms, primarily due 

to constraints such as code availability.  

The results also demonstrate that the PPO-based TSC controller using the multi-discrete 

action space and combined state space, exhibits superior performance in terms of both 

effectiveness and robustness. For effectiveness, it reduces average delays by 23.89% and 27.24% 

in peak and off-peak traffic demand conditions, respectively, when compared to the baseline (the 

pretimed signal controller). In terms of robustness, the average delays for both CVs and NCVs 

are lower than the baseline, even in scenarios with an MPR as low as 20%. Besides, the PPO 

algorithm can improve training efficiency compared to the DQN algorithm. In summary, PPO-

based controllers outperform other controllers in a pure CV environment. The integration of the 

multi-discrete action space and the combined state space further enhances the performance of 

PPO-based controllers and mitigates its sensitivity to sparse observations. The findings highlight 

that the adoption of the PPO algorithm with multi-discrete actions and combined state space is a 

promising approach for real-world traffic signal control environments. 

For the corridor scenarios, results indicate that MAPPO-M and MAPPO demonstrate the 

best performance in terms of bus metrics, while ASC and ATSP excel in car metrics. Regarding 

metrics related to the average person, ATSP demonstrates superior performance, and MARL-

based controllers also perform well. MARL-based controllers demonstrate superior performance 

in hypothetical scenarios compared to real-world scenarios, probably attributed to the complexity 

disparities between these two types of scenarios. As the MRP increases, both MAPPO-M and 

MAPPO demonstrate improved performance in terms of average delays across all scenarios. This 

improvement becomes more pronounced when the MPR is lower than 60%. MAPPO in the 

hypothetical scenario with high traffic demand outperforms MAPPO-M in low MPR scenarios. 

However, MAPPO-M outperforms MAPPO in the other three scenarios when the MPR is low, 

providing more stable services for both buses and cars. This suggests that the introduction of 

multi-discrete action space can enhance the robustness of MARL-based controllers in mixed 

traffic environments, aligning with our findings in isolated intersection scenarios. When bus 

passenger occupancy increases from 1 to 30 passengers per bus, the average bus delay decreases 

significantly across all scenarios. When it exceeds 30, the MARL-based controllers become 

insensitive to it, especially during peak hours. The average car delay experiences a slight 
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increase. However, the increases are minimal compared to the reduction in average bus delays, 

suggesting that the adverse impacts on the car are likely to be negligible, even with buses 

receiving more priority. Compared to MAPPO, except for the hypothetical scenario during peak 

hours with bus passenger occupancy less than 30, MAPPO-M provides better service for buses. 

Changes in bus arrival headway have insignificant impacts on the average bus delay, especially 

in scenarios controlled by MAPPO-M. As bus arrivals become less frequent, the average car 

delay decreases, along with the average person delay. 

The traffic signal controllers proposed in this study addressed several limitations present 

in existing controllers, yet there are numerous opportunities for further improvement, particularly 

when considering the novelty of applying RL in the TSC domain. The following research 

directions are promising and worth attention: 

1) Integrating traffic state prediction components: In mixed traffic environments 

with both CVs and non-CVs, the input state representation does not align with the assumption 

that it contains all relevant information for RL decision-making. Consequently, the performance 

of RL-based controllers becomes unreliable in such environments. Integrating traffic state 

prediction functions that use CVs’ states to predict non-CVs’ states can address this issue and 

significantly enhance the robustness of RL-based controllers. 

2) Developing hybrid controllers: RL-based controllers make decisions within a 

black box, potentially leading to arbitrary actions that may be difficult for humans to interpret or 

trust in real-world implementations. To address this concern, developing hybrid controllers that 

combine the strengths of DRL algorithms with baseline control rules is a promising strategy. 

This integration can help avoid catastrophic behavior and ensure the reliability of the control 

system. 

3) Refining the basic RL model: In this study, we employed vanilla RL algorithms 

without any modification. However, given the complexity of the TSP problem, effective 

customization of the RL model can significantly improve its performance. For example, 

incorporating recurrent neural networks (RNNs) to capture time-series features in consecutive 

inputs, integrating attention-based techniques to extract important information, etc., are avenues 

for refinement. Additionally, conducting more detailed investigations into the training and 

execution process is essential to pinpoint the theoretical limitations of the chosen RL algorithms 

and gain insight into how to refine them. 

4) Considering more comprehensive traffic conditions: While the study evaluated 

the proposed controllers under various conditions, additional comprehensive evaluations are still 

worthy of being conducted. This includes scenarios with multiple transit priority requests, 

different bus stop locations, and oversaturated traffic flow situations. Additionally, traffic 

environments involve many kinds of traffic participants. While transit vehicles have been 

considered, pedestrians, bicycles, and motorcycles are also worth attention. 

5) Expanding the control objects: This study primarily focused on optimizing 

traffic signals. With the advancement of autonomous vehicle (AV) technology, AVs are potential 
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control objects that can be integrated into the optimization process to achieve further progress. 

For instance, signal-vehicle coupled control is a promising research topic. In addition, applying 

MARL network-wide is also a challenging but promising research direction. 

6) Exploring different reward functions: In exploring various optimization goals 

by constructing different reward functions, objectives may encompass mitigating bus bunching, 

stabilizing bus arrival headway, reducing greenhouse gas emissions, enhancing traffic safety, and 

more. 

7) Optimizing at the network level: This study focuses solely on improving system 

efficiency at the operational level. Transit vehicles are granted conditional priorities based on 

their passenger occupancy, leading to fluctuations in bus arrival times due to uncertainty.  These 

fluctuations can hinder the development of public transportation systems, as a stable arrival 

schedule facilitates trip planning and increases the attractiveness of public transportation. Future 

research could be conducted from the planning level. For example, researchers could solve 

network-level optimization problems involving transit vehicle priority, assuming a multimodal 

transportation environment with a fixed travel demand and flexible travel mode selection. 
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